タグ「面積」の検索結果

25ページ目:全2409問中241問~250問を表示)
大阪薬科大学 私立 大阪薬科大学 2016年 第2問
次の問いに答えなさい.

$2$つの関数$f(x)=x^2+3$と$g(x)=4x^2-8 |x|$を考える.$xy$座標平面において,$y=f(x)$のグラフを$C_1$とし,$y=g(x)$のグラフを$C_2$とする.また,$C_1$上の点$(2,\ f(2))$における接線を$\ell$とする.

(1)$\ell$の$y$切片を求めよ.
(2)$\ell$と$C_2$の共有点の個数を求めよ.
(3)$C_1$と$C_2$の共有点のうち,第$1$象限にある点の座標を求めよ.
(4)$C_1$と$C_2$で囲まれた図形の面積を求めよ.
(5)$xy$座標平面上の関数$y=4x^2-8 |x|+ax+1$のグラフと$x$軸との共有点が$4$個になるように,定数$a$の値の範囲を定めよ.
北里大学 私立 北里大学 2016年 第2問
$\mathrm{AB}=3$,$\mathrm{BC}=5$,$\mathrm{CD}+\mathrm{DA}=12$である四角形$\mathrm{ABCD}$が円に内接している.$\mathrm{CD}=x$とおく.次の問いに答えよ.

(1)$\mathrm{AC}=3 \sqrt{6}$のとき,$x$の値を求めよ.
(2)$x$のとり得る値の範囲を求めよ.
(3)四角形$\mathrm{ABCD}$の面積の最大値を求めよ.
(4)四角形$\mathrm{ABCD}$の$4$辺すべてが接する円が存在するとき,$x$の値を求めよ.
北里大学 私立 北里大学 2016年 第3問
双曲線$\displaystyle \frac{x^2}{2}-y^2=1$に対し,双曲線上の点$\mathrm{P}(a,\ b)$における接線を$\ell$とする.ただし,$a>0$とする.

(1)$\ell$の方程式が$\displaystyle \frac{ax}{2}-by=1$で与えられることを示せ.
(2)$\ell$に垂直な双曲線の接線$m$が引けるための$a$の条件を求めよ.
(3)$a$が$(2)$の条件を満たすとする.双曲線上の点$\mathrm{Q}(c,\ d)$における接線が$\ell$に垂直に交わるように点$\mathrm{Q}$を定める.ただし,$d>0$とする.$\mathrm{O}$を原点とするとき,$\triangle \mathrm{OPQ}$の面積を最小にする$a$の値を求めよ.
神戸薬科大学 私立 神戸薬科大学 2016年 第5問
$xy$平面上に$3$点$\mathrm{A}(-1,\ 2)$,$\mathrm{B}(3,\ -2)$,$\mathrm{C}(5,\ 0)$があった.

(1)直線$\mathrm{AB}$と点$\mathrm{C}$の距離を求めると$[チ]$である.
(2)$\triangle \mathrm{ABC}$の面積を求めると$[ツ]$である.
(3)$\triangle \mathrm{ABC}$の外接円の方程式を求めると$[テ]$である.
明治大学 私立 明治大学 2016年 第3問
放物線$C:y=-x^2+ax$($a$は正の定数)と直線$\ell:y=mx+n$が$2$点$\mathrm{A}$,$\mathrm{B}$で交わっている.$\mathrm{A}$,$\mathrm{B}$の$x$座標を$\alpha,\ \beta$とすると,$0<\alpha<\beta<2a$を満たしている.$x=0$,$C$,$\ell$で囲まれた図形の面積を$T_1$,$C$と$\ell$で囲まれた図形の面積を$T_2$,$x=2a$,$C$,$\ell$で囲まれた図形の面積を$T_3$とする.このとき,
\[ T_2=T_1+T_3 \]
が満たされるとする.以下の各設問に答えよ.

(1)$T_2=T_1+T_3$から,$a,\ m,\ n$の間に関係式
\[ [ ]=0 \]
が成り立つ(もっとも簡潔な式で書くこと).
(2)$T_2=T_1+T_3$を満たす直線$\ell$は$m,\ n$によらず定点$[ ]$を通る.この定点を$a$を用いて表せ.
(3)$T_2$の値が最小となるのは直線$\ell$が$y=[ ]$のときであり,そのとき$T_2$の値は$[ ]$である.
(4)$(3)$のとき$\alpha,\ \beta$の値は
\[ \alpha=[ ]a,\quad \beta=[ ]a \]
である.
明治大学 私立 明治大学 2016年 第1問
次の各問の$[ ]$に当てはまる数を入れよ.

(1)$100$以下の自然数で,$2$と$5$を共に素因数にもち,それ以外の素数を素因数にもたない数の個数は,$[ ]$個である.
同様に$100$以下の自然数で,$2$と$3$を共に素因数にもち,それ以外の素数を素因数にもたない数の個数は,$[ ]$である.
(2)曲線$C:y=x^3-3x+16$を第$1$象限で考える.曲線$C$の接線で,点$(0,\ 0)$を通るものを$\ell$とするとき,$\ell$の傾きは,$[ ]$であり,$C$,$\ell$と$y$軸で囲まれた領域の面積は,$[ ]$である.
(3)$1$辺の長さが$y$の正方形を$\mathrm{ABCD}$とし,$2$つの対角線の交点を$\mathrm{O}$とする.$\mathrm{O}$から垂直に高さが$x$の点$\mathrm{E}$をとり,四角錐$\mathrm{E}$-$\mathrm{ABCD}$を考える.$\mathrm{AE}$の長さが$\displaystyle \frac{\sqrt{3}}{2}$のとき,体積が最大となるのは,
\[ x=[ ],\quad y=[ ] \]
のときである.
明治大学 私立 明治大学 2016年 第3問
関数$f(x)=x^4-4x^3-2x^2+14x+13$について考える.

(1)$a,\ b,\ c$が$a<b<c$を満たす定数で,関数$y=f(x)$は$x=a$と$x=c$のとき極小値をとり,$x=b$のとき極大値をとる.このとき,$a^2+b^2+c^2=[ア][イ]$である.
(2)直線$y=2x+4$を$\ell$とし,直線$\ell$に平行な直線$y=2x+p$を$m$とする.ただし,$p$は定数である.曲線$y=f(x)$と直線$\ell$は異なる$2$点で接している.さらに,曲線$y=f(x)$と直線$m$が異なる$3$個の共有点をもつとき,$p=[ウ][エ]$である.
また,$\alpha,\ \beta,\ \gamma$が$\alpha<\beta<\gamma$を満たす定数で,曲線$y=f(x)$と直線$\ell$の異なる$2$つの接点の$x$座標を$\alpha,\ \gamma$とし,曲線$y=f(x)$と直線$m$の接点の$x$座標を$\beta$とする.直線$m$の$\alpha \leqq x \leqq \beta$の部分と曲線$y=f(x)$,および直線$x=\alpha$で囲まれた部分の面積は$\displaystyle \frac{[オ][カ][キ]}{[ク][ケ]}$である.
明治大学 私立 明治大学 2016年 第2問
次の各問の$[ ]$に当てはまる数を入れよ.

三角形$\mathrm{ABC}$の内点$\mathrm{O}$をとる.$\mathrm{AO}$,$\mathrm{BO}$,$\mathrm{CO}$をそれぞれ辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$までのばしたときの各交点を$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とする.ここで,三角形$\triangle \mathrm{ABO}$,$\triangle \mathrm{ACO}$,$\triangle \mathrm{BCO}$の面積が,それぞれ$\triangle \mathrm{ABO}=c$,$\triangle \mathrm{ACO}=b$,$\triangle \mathrm{BCO}=a$とする.

(1)$\mathrm{B}$と$\mathrm{C}$を通る直線を$\ell$とする.$\mathrm{A}$から$\ell$への垂線の長さを$6$,$\mathrm{O}$から$\ell$への垂線の長さを$3$とするとき,$\displaystyle \frac{\mathrm{AO}}{\mathrm{DO}}=[ア]$,$\displaystyle \frac{\triangle \mathrm{ABO}}{\triangle \mathrm{BDO}}=[イ]$である.

(2)上の$(1)$とは異なる三角形$\mathrm{ABC}$について,$a=8$,$b=10$,$c=6$とする.
$\displaystyle \frac{\triangle \mathrm{CDO}}{\triangle \mathrm{BDO}}=\frac{[ウ]}{[エ]}$だから,$\triangle \mathrm{BDO}$の面積は,$[オ]$であり,$\triangle \mathrm{CDO}$の面積は,$[カ]$である.
(3)同様にして,$\displaystyle \triangle \mathrm{CEO}=\frac{[キ][ク]}{[ケ]}$,$\displaystyle \triangle \mathrm{AEO}=\frac{[コ][サ]}{[シ]}$,$\displaystyle \triangle \mathrm{AFO}=\frac{[ス][セ]}{[ソ]}$,$\displaystyle \triangle \mathrm{BFO}=\frac{[タ]}{[チ]}$となり,特に


$\displaystyle \frac{\triangle \mathrm{AFO}}{\triangle \mathrm{BFO}} \cdot \frac{\triangle \mathrm{BDO}}{\triangle \mathrm{CDO}} \cdot \frac{\triangle \mathrm{CEO}}{\triangle \mathrm{AEO}}=[ツ]$

$\displaystyle \frac{\mathrm{AO}}{\mathrm{DO}} \cdot \frac{\mathrm{BO}}{\mathrm{EO}} \cdot \frac{\mathrm{CO}}{\mathrm{FO}}=\frac{[テ][ト]}{[ナ]}$


である.
学習院大学 私立 学習院大学 2016年 第3問
三角形$\mathrm{ABC}$の面積が$18$で,頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の対辺の長さをそれぞれ$a,\ b,\ c$とするとき
\[ a \cos B=5,\quad b \sin A=12 \]
が成り立つとする.

(1)$a,\ b,\ c$を求めよ.
(2)$\cos A$の値を求めよ.
学習院大学 私立 学習院大学 2016年 第4問
放物線$C:y=x^2$上の点$\mathrm{P}(t,\ t^2)$を通り,$\mathrm{P}$における$C$の接線と直交する直線を$L$とする.ただし,$t$は正の実数とする.

(1)$L$の方程式を求めよ.
(2)$L$と$C$とで囲まれた部分の面積を$S$とする.$t$が正の実数全体を動くとき,$S$の最小値と,最小値を与える$t$の値を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。