タグ「面積」の検索結果

238ページ目:全2409問中2371問~2380問を表示)
神奈川大学 私立 神奈川大学 2010年 第3問
$2$次関数$y=f(x)$のグラフは,頂点が$\displaystyle \left( \frac{3}{2},\ -\frac{7}{2} \right)$で,点$(3,\ 1)$を通る.以下の問いに答えよ.

(1)$f(x)$を求め,$y=f(x)$のグラフをかけ.
(2)$y=f(x)$の接線のうち,傾きが$4$となるものの方程式を求めよ.
(3)$(2)$で求めた接線に平行で点$(2,\ 1)$を通る直線を$\ell$とする.直線$\ell$と放物線$y=f(x)$の交点の$x$座標を求めよ.
(4)直線$\ell$と放物線$y=f(x)$によって囲まれた部分の面積を求めよ.
神奈川大学 私立 神奈川大学 2010年 第2問
放物線$C:y=x^2$について,次の問いに答えよ.

(1)点$(1,\ 1)$を通り傾きが$a$である直線の方程式を求めよ.
(2)$(1)$で求めた直線と放物線$C$の共有点$\mathrm{P}$,$\mathrm{Q}$の座標を求めよ.
(3)線分$\mathrm{PQ}$の中点の軌跡の方程式を求めよ.ただし,$\mathrm{P}$と$\mathrm{Q}$が一致するとき,線分$\mathrm{PQ}$の中点とは$\mathrm{P}$を意味するものとする.
(4)$(3)$で求めた軌跡,放物線$C$および$y$軸で囲まれた図形の面積を求めよ.
広島工業大学 私立 広島工業大学 2010年 第3問
放物線$C:y=x^2+a$があり,直線$\ell:y=2bx$は$C$の接線である.ただし,$a$と$b$は定数で$b>0$とする.

(1)$a$を$b$で表せ.
(2)$C$と$\ell$および$y$軸で囲まれた部分の面積$S_1$を$b$を用いて表せ.
(3)$C$と$\ell$の接点から$x$軸へ下ろした垂線と$\ell$および$x$軸で囲まれた部分の面積を$S_2$とする.このとき,$S_2$と$(2)$で求めた$S_1$の比の値$\displaystyle \frac{S_2}{S_1}$を求めよ.
玉川大学 私立 玉川大学 2010年 第1問
次の$[ ]$を埋めよ.

(1)曲線$y=x^2+2x$と$x$軸とで囲まれる部分の面積は$\displaystyle \frac{[ ]}{[ ]}$である.

(2)直角三角形$\mathrm{ABC}$において,$\mathrm{AB}=5$,$\mathrm{BC}=3$,$\mathrm{CA}=4$,$\angle \mathrm{BAC}=\theta$とするとき,$\displaystyle \cos \theta=\frac{[ ]}{[ ]}$,$\displaystyle \sin \theta=\frac{[ ]}{[ ]}$,$\displaystyle \tan \theta=\frac{[ ]}{[ ]}$である.

(3)次の計算をせよ.


(i) $\displaystyle \frac{1-\displaystyle\frac{1}{\sqrt{2}}}{\sqrt{2}-\displaystyle\frac{1}{\sqrt{2}}}=\sqrt{[ ]}-[ ]$

(ii) $\displaystyle \frac{1-\displaystyle\frac{1}{\sqrt{5}}}{\sqrt{5}-\displaystyle\frac{1}{\sqrt{5}}}=\frac{\sqrt{[ ]}-[ ]}{[ ]}$

(iii) $\displaystyle \frac{1}{1-\displaystyle\frac{1}{1+\sqrt{2}+\sqrt{3}}}=[ ]-\sqrt{[ ]}+\sqrt{[ ]}$


(4)$x \neq 0$とするとき,$\displaystyle k=x+\frac{1}{x}$のとり得る値の範囲は,$k \leqq [ ]$,または$k \geqq [ ]$である.
広島工業大学 私立 広島工業大学 2010年 第4問
平行四辺形$\mathrm{OABC}$において,$\mathrm{OA}=2$,$\mathrm{OC}=1$とし,$\angle \mathrm{AOC}$は鋭角とする.また,辺$\mathrm{OA}$上に点$\mathrm{P}$をとり,$\displaystyle \frac{\mathrm{OP}}{\mathrm{OA}}=t$とする.

(1)ベクトル$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OC}}$をそれぞれ$\overrightarrow{a},\ \overrightarrow{c}$とする.このとき,ベクトル$\overrightarrow{\mathrm{CP}}$を$\overrightarrow{a}$と$\overrightarrow{c}$および実数$t$を用いて表せ.
(2)$\overrightarrow{\mathrm{OB}}$と$\overrightarrow{\mathrm{CP}}$が垂直となるとき,$\cos \theta$を$t$を用いて表せ.ただし,$\angle \mathrm{AOC}=\theta$とする.
(3)三角形$\mathrm{OCP}$の面積が平行四辺形$\mathrm{OABC}$の面積の$\displaystyle \frac{1}{5}$であるとき,$t$の値を求めよ.さらに,$\overrightarrow{\mathrm{OB}}$と$\overrightarrow{\mathrm{CP}}$が垂直となるとき,$(2)$で定めた角$\theta$の大きさを求めよ.
広島工業大学 私立 広島工業大学 2010年 第7問
$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}$の$2$等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とおく.このとき,$\mathrm{AB}=4$,$\mathrm{AC}=2$,$\mathrm{AD}=\mathrm{BD}$とする.

(1)辺$\mathrm{BC}$の長さを求めよ.
(2)$\triangle \mathrm{ABC}$の面積を求めよ.
日本福祉大学 私立 日本福祉大学 2010年 第3問
放物線$y=x^2+2x+4$に原点から$2$本の接線を引くとき,放物線と$2$本の接線で囲まれる部分の面積を求めよ.
日本福祉大学 私立 日本福祉大学 2010年 第4問
以下の問いに答えよ.

$y=\sin x (0 \leqq x<2\pi) \cdots\cdots①$
$y=\cos x (0 \leqq x<2\pi) \cdots\cdots②$

(1)$①$式と$②$式で表される$2$曲線の交点の座標を求めよ.
(2)$①$式と$②$式で表される$2$曲線で囲まれる図形の面積を求めよ.
神戸薬科大学 私立 神戸薬科大学 2010年 第4問
以下の文中の$[ ]$の中にいれるべき数または式を求めよ.

$0<p<2$をみたす実数$p$に対して,頂点が$(p,\ -p^2)$で点$(2,\ 0)$を通り軸が$y$軸に平行な放物線がある.

(1)この放物線の方程式を$p$を使って表すと$y=[ ]$となる.
(2)この放物線と$x$軸で囲まれる領域の面積を$p$を用いて表すと$[ ]$である.
(3)この放物線と$x$軸で囲まれる領域の面積が最大になるときの$p$の値は$[ ]$であり,そのときの面積は$[ ]$である.
ノートルダム清心女子大学 私立 ノートルダム清心女子大学 2010年 第3問
$n$を$3$以上の自然数とするとき,半径$a>0$の円に内接する正$n$角形の面積を求めなさい.また,この正$n$角形の$n$個の辺の長さの総和を求めなさい.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。