タグ「面積」の検索結果

236ページ目:全2409問中2351問~2360問を表示)
日本女子大学 私立 日本女子大学 2010年 第4問
$2$次関数$f(x)=x^2+2x+2,\ g(x)=x^2-2x+4,\ h(x)=2x^2$について次の問いに答えよ.

(1)放物線$y=f(x)$と$y=g(x)$の交点の$x$座標を求めよ.
(2)放物線$y=f(x)$と$y=h(x)$の交点の$x$座標を求めよ.
(3)放物線$y=g(x)$と$y=h(x)$の交点の$x$座標を求めよ.
(4)連立不等式$y \leqq f(x)$,$y \leqq g(x)$,$y \geqq h(x)$の表す領域を$D$とする.$D$の面積を$a+b \sqrt{3}+c \sqrt{5}$(ただし,$a,\ b,\ c$は有理数)とするとき,$a,\ b,\ c$の値を求めよ.
獨協医科大学 私立 獨協医科大学 2010年 第2問
連立方程式
\[ \left\{ \begin{array}{lll}
0 \leqq y \leqq 1 & & \cdots\cdots① \\
\log_{\frac{1}{2}}(2x^2+3x-2) \geqq \log_{\frac{1}{2}}(x^2+2x) & & \cdots\cdots② \\
y^2 \leqq 2x-1 & & \cdots\cdots③ \\
4x+y-3 \geqq 0 & & \cdots\cdots④
\end{array} \right. \]
が表す領域$D$を考える.

(1)$②$の解は,$\displaystyle \frac{[ ]}{[ ]}<x \leqq [ ]$である.
(2)放物線$y^2=2x-1$と直線$4x+y-3=0$の$2$交点のうち,$y$座標が正となる交点の座標は$\displaystyle \left( \frac{[ ]}{[ ]},\ \frac{[ ]}{[ ]} \right)$である.
(3)領域$D$の面積は$\displaystyle \frac{[ ]}{[ ]}$である.
獨協医科大学 私立 獨協医科大学 2010年 第3問
$1$辺の長さが$1$である正四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$の中点を$\mathrm{P}$,辺$\mathrm{OB}$を$2:1$に内分する点を$\mathrm{Q}$,辺$\mathrm{OC}$を$3:1$に内分する点を$\mathrm{R}$とする.また,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とする.

(1)$\displaystyle \overrightarrow{\mathrm{PQ}}=-\frac{[ ]}{[ ]} \overrightarrow{a}+\frac{[ ]}{[ ]} \overrightarrow{b}$,$\displaystyle |\overrightarrow{\mathrm{PQ}}|=\frac{\sqrt{[ ]}}{[ ]}$

$\displaystyle \overrightarrow{\mathrm{PR}}=-\frac{[ ]}{[ ]} \overrightarrow{a}+\frac{[ ]}{[ ]} \overrightarrow{c}$,$\displaystyle |\overrightarrow{\mathrm{PR}}|=\frac{\sqrt{[ ]}}{[ ]}$

である.
(2)$\triangle \mathrm{PQR}$の面積は$\displaystyle \frac{\sqrt{[ ]}}{[ ]}$である.

(3)$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とし,線分$\mathrm{OG}$と平面$\mathrm{PQR}$の交点を$\mathrm{D}$とする.このとき,$\displaystyle \mathrm{OG}:\mathrm{OD}=1:\frac{[ ]}{[ ]}$である.
獨協医科大学 私立 獨協医科大学 2010年 第4問
原点を$\mathrm{O}$とする座標平面上の動点$\mathrm{P}$の位置ベクトル$\overrightarrow{\mathrm{OP}}=(x,\ y)$が,時刻$t$の関数として,$x=e^{-2t} \cos 2\pi t$,$y=e^{-2t} \sin 2\pi t$で表されている.

(1)点$\mathrm{P}$の速度ベクトル$\displaystyle \overrightarrow{v}=\left( \frac{dx}{dt},\ \frac{dy}{dt} \right)$の大きさは,$|\overrightarrow{v}|=[ ] \sqrt{[ ]+\pi^2}e^{-2t}$である.
(2)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{v}$のなす角を$\alpha$とするとき,$\displaystyle \cos \alpha=\frac{[ ]}{\sqrt{[ ]+\pi^2}}$であり,これは時刻$t$によらない一定値である.
(3)$n$を自然数として,$t=n-1$から$t=n$までの間に点$\mathrm{P}$が動く道のり$S_n$は,
\[ S_n=\sqrt{[ ]+\pi^2} \left( e^{[ ]}-[ ] \right) e^{-2n} \]
である.また,$\displaystyle \sum_{n=1}^{\infty}S_n=\sqrt{[ ]+\pi^2}$である.
(4)$t=0$から$\displaystyle t=\frac{1}{4}$までの間に点$\mathrm{P}$がえがく曲線と,$x$軸,$y$軸とで囲まれる図形の面積$I$は,$\displaystyle I=\int_a^b y \, dx=\int_{\frac{1}{4}}^0 y \frac{dx}{dt} \, dt$で求められる.このとき$a=[ ]$,$b=[ ]$で,$\displaystyle I=\int_0^{\frac{1}{4}} e^{-4t} \{ \sin [$*$] \pi t+\pi (1-\cos [$*$] \pi t) \} \, dt$である.
星薬科大学 私立 星薬科大学 2010年 第2問
下図のように,$\mathrm{AB}=5$,$\mathrm{BC}=7$,$\mathrm{CA}=4$の$\triangle \mathrm{ABC}$に内接する円を$\mathrm{O}$,その接点を$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とするとき,$\triangle \mathrm{ABC}$の面積は$[ ] \sqrt{[ ]}$,円$\mathrm{O}$の半径は$\displaystyle \frac{\sqrt{[ ]}}{[ ]}$,$\triangle \mathrm{DEF}$の面積は$\displaystyle \frac{[ ] \sqrt{[ ]}}{[ ]}$である.
(図は省略)
星薬科大学 私立 星薬科大学 2010年 第5問
放物線$y=x^2+1$を$C_1$,放物線$y=-x^2+6x-8$を$C_2$として次の問いに答えよ.

(1)点$\displaystyle \left( \frac{[ ]}{[ ]},\ [ ] \right)$に関して,$C_1$と$C_2$は対称である.
(2)$C_1$と$C_2$の両方に接する$2$つの接線のうち,$x$軸と交わらない方を$\ell_1$,$x$軸と交わる方を$\ell_2$とすると,$\ell_1$の方程式は$y=[ ]$,$\ell_2$の方程式は$y=[ ] x-[ ]$である.
(3)$C_1$と$\ell_1$および$\ell_2$とで囲まれた部分の面積と,$C_2$と$\ell_1$および$\ell_2$とで囲まれた部分の面積の和は$\displaystyle \frac{[ ]}{[ ]}$である.
東京電機大学 私立 東京電機大学 2010年 第2問
三角形$\mathrm{ABC}$があり,$\angle \mathrm{A}=120^\circ$とする.また,各辺の長さを$a=\mathrm{BC}$,$b=\mathrm{CA}$,$c=\mathrm{AB}$としたとき,$2$次方程式$kx^2-4x+1=0$の解が$b,\ c$であるという.ただし,$k$は正の実数とする.次の問に答えよ.

(1)$a$を$k$で表せ.
(2)三角形$\mathrm{ABC}$の面積を$k$で表せ.
(3)三角形$\mathrm{ABC}$の面積が$1$のとき,$a^2$を求めよ.
東京電機大学 私立 東京電機大学 2010年 第3問
正の定数$k$に対して,曲線$\displaystyle C:y=\frac{x^3}{3}$の接線で傾きが$k^2$のものを$\ell_1,\ \ell_2$とする.$C$と$\ell_1,\ \ell_2$の接点$\mathrm{P}$,$\mathrm{Q}$はそれぞれ,第$1$,第$3$象限にあるとする.また,$C$と$\ell_1$との共有点のうち,$\mathrm{P}$でないものを$\mathrm{R}$とする.次の問に答えよ.

(1)$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$の座標を$k$で表せ.
(2)線分$\mathrm{QR}$と$C$で囲まれた図形の面積$T$を$k$で表せ.
(3)$(2)$で求めた$T$が,$T<1$をみたすような$k$の値の範囲を求めよ.
東京電機大学 私立 東京電機大学 2010年 第5問
三角形$\mathrm{ABC}$があり,$\angle \mathrm{A}=120^\circ$とする.また,各辺の長さを$a=\mathrm{BC}$,$b=\mathrm{CA}$,$c=\mathrm{AB}$としたとき,$2$次方程式$kx^2-4x+1=0$の解が$b,\ c$であるという.ただし,$k$は正の実数とする.次の問に答えよ.

(1)$a$を$k$で表せ.
(2)三角形$\mathrm{ABC}$の面積を$k$で表せ.
(3)三角形$\mathrm{ABC}$の面積が$1$のとき,$a^2$を求めよ.
東京電機大学 私立 東京電機大学 2010年 第6問
平面上に$4$点$\mathrm{A}(1,\ 1)$,$\mathrm{B}(4,\ 1)$,$\mathrm{C}(4,\ 4)$,$\mathrm{D}(1,\ 4)$をとる.また$a>0$とし,$y=a^2x^2$で定まる放物線を$T$とする.ただし,$T$は辺$\mathrm{CD}$と交点をもつものとする.このとき,次の問に答えよ.

(1)$a$の範囲を求めよ.
(2)$T$が四角形$\mathrm{ABCD}$を$2$つに分割するとき,$T$よりも右側にある部分の面積を$S$とする.$S$を$a$の関数で表せ.
(3)$T$が四角形$\mathrm{ABCD}$の面積を$2$等分するときの$a$の値を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。