タグ「面積」の検索結果

235ページ目:全2409問中2341問~2350問を表示)
北星学園大学 私立 北星学園大学 2010年 第3問
$\triangle \mathrm{ABC}$において,$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の長さを,それぞれ$a,\ b,\ c$とする.以下の問に答えよ.

(1)$\angle \mathrm{C}$が$90^\circ$のとき,$\sin^2 A+\sin^2 B=1$であることを示せ.
(2)$\sin B=2 \sin A \cos C$,$a:b=1:\sqrt{3}$,$c=3$のとき,$\triangle \mathrm{ABC}$の面積を求めよ.
愛知工業大学 私立 愛知工業大学 2010年 第3問
$f(x)=8x-x^2$とする.

(1)$\displaystyle \frac{f(4)-f(2)}{2}=f^\prime(c)$をみたす$c$を求めよ.
(2)$xy$平面において,$(1)$で求めた$c$について,点$(c,\ f(c))$における曲線$y=f(x)$の接線,曲線$y=f(x)$および$y$軸で囲まれた部分の面積を求めよ.
北海道科学大学 私立 北海道科学大学 2010年 第10問
三角形$\mathrm{ABC}$において,$\mathrm{AB}=2$,$\mathrm{AC}=4$,$A=120^\circ$であるとき,三角形$\mathrm{ABC}$の面積は$[ ]$である.また,この三角形$\mathrm{ABC}$の$\angle \mathrm{A}$の二等分線と辺$\mathrm{BC}$との交点を$\mathrm{D}$とするとき,$\mathrm{AD}$の長さは$[ ]$である.
(図は省略)
北海道科学大学 私立 北海道科学大学 2010年 第11問
図の直方体$\mathrm{ABCD}$-$\mathrm{EFGH}$において,
\[ \mathrm{AB}=3,\quad \mathrm{AD}=2,\quad \mathrm{AE}=1 \]
とし,$\angle \mathrm{DEB}=\theta$とおく.このとき,次の各問に答えよ.
(図は省略)

(1)$\mathrm{BD},\ \mathrm{DE},\ \mathrm{EB}$の長さを求めよ.
(2)$\cos \theta$の値を求めよ.
(3)三角形$\mathrm{BDE}$の面積を求めよ.
(4)$\mathrm{A}$から三角形$\mathrm{BDE}$におろした垂線の長さを求めよ.
東北工業大学 私立 東北工業大学 2010年 第4問
$2$次関数$f(x)=x^2-6x-2$がある.

(1)関数$f(x)$の極小値は$-[ ]$である.
(2)直線$\ell:y=-2x+b$と$y=f(x)$のグラフは,点$\mathrm{P}$で接している.このとき点$\mathrm{P}$の$x$座標は$[ ]$,$y$座標は$-[ ]$であり,$b=-[ ]$となる.
(3)$y$軸と$y=f(x)$のグラフおよび直線$\ell$で囲まれた部分の面積$S$は$\displaystyle S=\frac{[ ]}{3}$である.
日本女子大学 私立 日本女子大学 2010年 第1問
図のように,$4$辺の長さが$\mathrm{AB}=4$,$\mathrm{BC}=5$,$\mathrm{CD}=7$,$\mathrm{DA}=10$の四角形$\mathrm{ABCD}$が円$\mathrm{O}$に内接するものとする.

(1)$\angle \mathrm{ABC}$を$\theta_1$,$\angle \mathrm{CDA}$を$\theta_2$とするとき,$\cos \theta_1$と$\cos \theta_2$の値および対角線$\mathrm{AC}$の長さを求めよ.
(2)この円の半径$R$を求めよ.
(3)この四角形の面積$S$を求めよ.
(図は省略)
愛知工業大学 私立 愛知工業大学 2010年 第1問
次の$[ ]$を適当に補え.

(1)$x^2-2y^2+xy+5x+y+6$を因数分解すると$[ ]$となる.
(2)平面上に半径$1$と半径$2$の円がある.共通接線がちょうど$3$本引けるとき,この$3$本の接線によって囲まれる三角形の面積は$[ ]$である.
(3)$2$つの平面ベクトルを$\overrightarrow{a}=(3,\ -1)$,$\overrightarrow{b}=(0,\ 2)$とする.$s,\ t$が$s+t=3 (0 \leqq s \leqq 3)$をみたすとき,ベクトル$s \overrightarrow{a}+t \overrightarrow{b}$の大きさの最大値は$[ ]$,最小値は$[ ]$である.
(4)$y=\sin^2 x+4 \sin x \cos x+3 \cos^2 x$を$\sin 2x$と$\cos 2x$の式で表すと$y=[ ]$となり,$0 \leqq x \leqq \pi$における$y$の値の範囲は$[ ]$である.
(5)ある粒子を$1$枚で$50 \, \%$遮断できる繊維がある.この繊維を少なくとも$[ ]$枚重ねれば,この粒子を$99 \, \%$以上遮断できる.ただし,$\log_{10}2=0.3010$とする.
(6)$\displaystyle S_n=\frac{\left( \sum_{k=1}^n k \right)^2}{\sum_{k=1}^n k^2}$のとき,$S_3=[ ]$であり,$\displaystyle \lim_{n \to \infty} \frac{S_n}{n}=[ ]$である.
愛知工業大学 私立 愛知工業大学 2010年 第4問
次の$[ ]$を適当に補え.

(1)$x^2-2y^2+xy+5x+y+6$を因数分解すると$[ ]$となる.
(2)連立不等式$\left\{ \begin{array}{l}
x^2-2x-3<0 \\
x^2+3x+1>0
\end{array} \right.$をみたす$x$の範囲は$[ ]$である.
(3)$x$の$2$次方程式$x^2-2ax-a^2+1=0$が実数解をもたないような実数$a$の範囲は$[ ]$である.
(4)初速$v \; \mathrm{m} \, / \, \text{秒}$で地上から真上に投げたボールの$x$秒後の高さ$y \; \mathrm{m}$は,$y=vx-5x^2$で表されるものとする.地上から真上に投げたボールが$3$秒後に最高点に達したとすると,ボールの初速は$[ ] \; \mathrm{m} \, / \, \text{秒}$であり,最高点の高さは$[ ] \; \mathrm{m}$である.
(5)$4$桁の自然数で各位の数字がすべて異なるものは全部で$[ ]$個あり,そのうち,$1234$より大きいものは全部で$[ ]$個である.
(6)平面上に半径$1$と半径$2$の円がある.共通接線がちょうど$3$本引けるとき,この$3$本の接線によって囲まれる三角形の面積は$[ ]$である.
(7)$\mathrm{A}$君は$3$校の大学を受験し,合格する確率はすべて等しく$\displaystyle \frac{1}{2}$であるという.$\mathrm{A}$君が少なくとも$1$校に合格する確率は$[ ]$である.また,合格した大学には$1$校につき$30$万円の入学金を支払うとすると,支払う入学金の期待値は$[ ]$円である.
中京大学 私立 中京大学 2010年 第2問
以下の$[ ]$にあてはまる数値または記号を求めよ.

(1)連立不等式$\left\{ \begin{array}{l}
4x^2-100x<51 \\
|2x-5|+|6x-1|>15
\end{array} \right.$の解は$\displaystyle \frac{[ ]}{[ ]}<x<\frac{[ ]}{[ ]}$である.

(2)連立方程式$\left\{ \begin{array}{l}
3x-4y+5z=9 \\
5x+2y-3z=5 \\
2x+6y-z=-7
\end{array} \right.$の解は
\[ x=\frac{[ ]}{[ ]},\quad y=-\frac{[ ]}{[ ]},\quad z=-\frac{[ ]}{[ ]} \]
である.
(3)四辺形$\mathrm{ABCD}$が$\mathrm{AB}=4$,$\mathrm{BC}=6$,$\mathrm{CD}=\sqrt{14}$,$\angle \mathrm{ABC}=60^\circ$,$\angle \mathrm{ADC}=90^\circ$をみたすとき,$\mathrm{AC}=[ ] \sqrt{[ ]}$,$\mathrm{AD}=\sqrt{[ ]}$,四辺形$\mathrm{ABCD}$の面積$=[ ]+[ ] \sqrt{[ ]}$であり,点$\mathrm{D}$を通る直線が辺$\mathrm{BC}$と垂直に交わる点を$\mathrm{E}$とすると,$\mathrm{DE}=[ ]+\sqrt{[ ]}$である.
東北工業大学 私立 東北工業大学 2010年 第2問
三角形$\mathrm{ABC}$があり,その辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の長さはそれぞれ$9,\ 6,\ 5$とする.また,辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$上にはそれぞれ点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$があり,$\mathrm{AD}$,$\mathrm{BE}$,$\mathrm{CF}$の長さはすべて等しく,その値が$a$であるとする.このとき,

(1)三角形$\mathrm{ABC}$の面積は$[ ] \sqrt{2}$である.
(2)$\angle \mathrm{ABC}=B$とすれば,$\displaystyle \cos B=\frac{[ ]}{27}$である.
(3)$\mathrm{BD}$と$\mathrm{BE}$の長さが等しくなるように$a$を決めると,$\mathrm{DE}$の長さは$\sqrt{[ ]}$になる.
(4)$\displaystyle a=\frac{[ ]}{16}$であれば,$\angle \mathrm{ADF}$が直角になる.
(5)$a=2$ならば,三角形$\mathrm{CFE}$の面積は$\displaystyle \frac{[ ] \sqrt{2}}{3}$になる.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。