タグ「面積」の検索結果

234ページ目:全2409問中2331問~2340問を表示)
西南学院大学 私立 西南学院大学 2010年 第5問
曲線$C:y=x |x-1|$と,直線$\ell:y=kx$に関して,次の問に答えよ.ただし,$k$は実数の定数とする.

(1)曲線$C$の概形を描け.
(2)曲線$C$と直線$\ell$が$x>0$で$2$つの交点を持つような$k$の範囲を求めよ.
(3)$k$が$(2)$で求めた範囲を動くとき,$C$と$\ell$によって囲まれる図形全体の面積を最小にする$k$の値を求めよ.
西南学院大学 私立 西南学院大学 2010年 第5問
$xy$平面上の$3$点$(0,\ -13)$,$(1,\ -6)$,$(3,\ 2)$を通る$2$次関数のグラフ$y=f(x)$があり,これと$x$軸で囲まれた部分の中に存在する平行四辺形$\mathrm{ABCD}$を考える.ここで,平行四辺形の辺$\mathrm{AB}$は$x$軸上にあり,点$\mathrm{C}$と点$\mathrm{D}$は$2$次関数のグラフ上にある.ただし,点$\mathrm{A}$の$x$座標は点$\mathrm{B}$の$x$座標より小さく,点$\mathrm{C}$の$x$座標は$4$より大きいものとする.このとき,次の問に答えよ.

(1)上の条件を満たす$f(x)$を求めよ.
(2)点$\mathrm{C}$の$x$座標を$t$とするとき,平行四辺形$\mathrm{ABCD}$の面積$S$を$t$を用いて表せ.
(3)平行四辺形$\mathrm{ABCD}$の面積$S$の最大値を求めよ.
学習院大学 私立 学習院大学 2010年 第3問
平面上で連立不等式
\setstretch{2}
\[ \left\{ \begin{array}{l}
x \geqq 0 \\
y \leqq 16 \\
y \geqq 4x^2 \\
y \geqq -x^2+2x+3
\end{array} \right. \]
\setstretch{1.3}
の表す領域の面積を求めよ.
学習院大学 私立 学習院大学 2010年 第2問
第一象限内にあって$2$つの曲線
\[ y=x^2-1,\quad x^2+y^2+2 \sqrt{3}y-1=0 \]
と$2$つの直線
\[ y=3,\quad x=0 \]
とで囲まれる図形を$D$とする.

(1)$D$の面積を求めよ.
(2)$D$を$y$軸に関して$1$回転して得られる回転体の体積を求めよ.
北海道文教大学 私立 北海道文教大学 2010年 第5問
下の図において,円$\mathrm{O}$の直径$\mathrm{AB}$と弦$\mathrm{CD}$の交点を$\mathrm{P}$とし,$\mathrm{AB}=6$,$\mathrm{PC}=2$,$\mathrm{PD}=3$とするとき,次の問いに答えなさい.

(1)線分$\mathrm{OP}$の長さを求めなさい.
(2)$\triangle \mathrm{ODC}$の面積を求めなさい.
(図は省略)
広島国際学院大学 私立 広島国際学院大学 2010年 第2問
鋭角三角形$\mathrm{ABC}$において,その面積$S$は$12 \sqrt{5}$に等しく,また$\displaystyle \sin A=\frac{\sqrt{5}}{3}$,$c=9$である.ここで$c$は辺$\mathrm{AB}$の長さであり,$A=\angle \mathrm{BAC}$である.

(1)辺$\mathrm{AC}$の長さ$b$を求めなさい.
(2)辺$\mathrm{BC}$の長さ$a$を求めなさい.
北海道薬科大学 私立 北海道薬科大学 2010年 第1問
次の各設問に答えよ.

(1)$\displaystyle \frac{4}{3+\sqrt{5}}+\frac{1}{2+\sqrt{5}}$を計算すると$[ ]$となる.

(2)$3^{2x}-2 \times 3^{x+2}=-81$を解くと,$x=[ ]$となる.
(3)$\overrightarrow{\mathrm{AB}}=(2,\ 3)$,$\overrightarrow{\mathrm{CB}}=(-4,\ 5)$とする.このとき,$\overrightarrow{\mathrm{AC}}=([ ],\ [ ])$であり,三角形$\mathrm{ABC}$の面積は$[ ]$である.
(4)$3$つの直線$ax+y=1$,$x+2y=3$,$x-ay=-3$が一点で交わるとき,定数$a$の値は
\[ [ ] \text{または} \frac{[ ]}{[ ]} \]
である.
藤田保健衛生大学 私立 藤田保健衛生大学 2010年 第2問
円$\mathrm{O}_1,\ \mathrm{O}_2,\ \mathrm{O}_3,\ \cdots$があり,すべての$n=1,\ 2,\ 3,\ \cdots$に対して

(i) $\mathrm{O}_n$の中心の座標は$(x_n,\ 0)$であり,$x_n>x_{n+1}$である.
(ii) $\mathrm{O}_n$と$\mathrm{O}_{n+1}$は外接している.
(iii) $\mathrm{O}_n$は原点を端点とする$2$本の半直線$\displaystyle y=\pm \frac{1}{\sqrt{3}}x (x \geqq 0)$に接しているとする.

このとき

(1)$\mathrm{O}_n$の半径$r_n$を$x_n$で表すと$r_n=[ ]$である.
(2)$x_n$を$x_1$と$n$で表すと$x_n=[ ]$である.
(3)$x_1=4$とする.$\mathrm{O}_1$から$\mathrm{O}_m$までの面積の和を$S_m$とすると$\displaystyle \lim_{m \to \infty}S_m=[ ]$である.
北海道薬科大学 私立 北海道薬科大学 2010年 第3問
$x^2+y^2-6ax+4ay+19a^2-a-1=0$($a$は定数)は円を表すものとする.

(1)$a$の値の範囲は$\displaystyle \frac{[ ]}{[ ]}<a<\frac{[ ]}{[ ]}$である.

(2)この円の面積が最大となるとき,円の中心座標は$\displaystyle \left( \frac{[ ]}{[ ]},\ \frac{[ ]}{[ ]} \right)$であり,最大面積は$\displaystyle \frac{[ ]}{[ ]} \pi$となる.
このとき,座標$\displaystyle \left( -\frac{1}{3},\ 1 \right)$を通り,円の面積を二等分する直線の方程式は
\[ y=-[ ] x+\frac{[ ]}{[ ]} \]
である.
北海道薬科大学 私立 北海道薬科大学 2010年 第4問
放物線$C:y=x^2-6x+a$($a$は正の実数)は,$x$軸と,異なる$2$点$\mathrm{A}$,$\mathrm{B}$で交わるものとする.$x$座標の値の小さい方を$\mathrm{A}$とする.また

$C$と$x$軸および$y$軸の$3$つで囲まれた部分の面積を$S_1$
$C$と$x$軸で囲まれた部分の面積を$S_2$
$C$と$x$軸および直線$x=6$の$3$つで囲まれた部分の面積を$S_3$

とする.

(1)$a$の取り得る値の範囲は$[ ]<a<[ ]$である.
(2)$S_1+S_3=S_2$となるのは$a=[ ]$のときである.
(3)$(2)$が成り立つとき

$\mathrm{A}$の$x$座標は$[ ]-\sqrt{[ ]}$
$\mathrm{B}$の$x$座標は$[ ]+\sqrt{[ ]}$

であり,$S_1+S_3$の値は$[ ] \sqrt{[ ]}$である.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。