タグ「面積」の検索結果

230ページ目:全2409問中2291問~2300問を表示)
早稲田大学 私立 早稲田大学 2010年 第3問
$t$を実数とする.$2$つの放物線

$y=x^2+1 \qquad \cdots\cdots①$
$y=-(x-t)^2+t \qquad \cdots\cdots②$

の両方に接する$2$本の直線を$\ell_1,\ \ell_2$とし,$\ell_1$と$\ell_2$の交点を$\mathrm{P}$,$\ell_1$と$①$の接点を$\mathrm{A}(\alpha,\ \alpha^2+1)$,$\ell_2$と$①$の接点を$\mathrm{B}(\beta,\ \beta^2+1)$とする.次の設問に答えよ.

(1)$\mathrm{P}$の座標を$\alpha,\ \beta$を用いて表せ.
(2)三角形$\mathrm{APB}$の面積を$S(t)$とするとき,$S(t)$を$t$の式で表せ.
(3)$S(t)$の最小値を求めよ.
関西大学 私立 関西大学 2010年 第2問
$p$を$0 \leqq p<1$を満たす定数とし,$x$の関数$f(x)$を次のように定める.
\[ f(x)=|x+1|+|x-1|+|x-p| \]
以下の問いに答えよ.

(1)$\displaystyle p=\frac{1}{2}$として,$y=f(x)$のグラフの概形をかけ.
(2)$x$軸,$x=-1,\ x=1$と$y=f(x)$とで囲まれてできる図形の面積を$S$とする.$S$を$p$を用いて表せ.
(3)$S$を最小にする$p$の値と,そのときの$S$の値を求めよ.
金沢工業大学 私立 金沢工業大学 2010年 第4問
$\mathrm{O}$を原点とする座標平面に点$\mathrm{A}(4,\ 6)$,$\mathrm{B}(6,\ -4)$がある.直線$y=x$に関して点$\mathrm{A}$と対称な点を$\mathrm{P}$,点$\mathrm{B}$に関して点$\mathrm{A}$と対称な点を$\mathrm{Q}$とする.

(1)点$\mathrm{P}$の座標は$([ク],\ [ケ])$である.
(2)点$\mathrm{Q}$の座標は$([コ],\ [サシス])$である.
(3)$\triangle \mathrm{PAB}$の面積は$[セ]$である.
(4)$\triangle \mathrm{PAQ}$の面積は$[ソタ]$である.
金沢工業大学 私立 金沢工業大学 2010年 第5問
放物線$y=x^2-5x$に直線$y=x+a$が接しているとする.ただし,$a$は定数とする.

(1)$a=[アイ]$であり,接点の座標は$([ウ],\ [エオ])$である.
(2)この放物線と直線,および$y$軸で囲まれた図形の面積は$[カ]$である.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2010年 第3問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=8,\ \mathrm{BC}=7,\ \mathrm{CA}=9$のとき,$\cos A$および$\triangle \mathrm{ABC}$の面積を求めよ.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2010年 第3問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=8,\ \mathrm{BC}=7,\ \mathrm{CA}=9$のとき,$\cos A$および$\triangle \mathrm{ABC}$の面積を求めよ.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2010年 第6問
$2$つの関数$y = x^2,\ y = x^3-x$のグラフについて,次の設問に答えよ.

(1)交点の座標をすべて求めよ.
(2)$2$つの関数のグラフで囲まれた$2$つの図形の面積の和を求めよ.
早稲田大学 私立 早稲田大学 2010年 第1問
次の問いに答えよ.

(1)平面上の$4$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(0,\ 2)$,$\mathrm{B}(4,\ 0)$,$\mathrm{C}(1,\ 1)$に対し,線分$\mathrm{BC}$の垂直二等分線は$[ア]x+y+[イ]=0$となる.また,平面上で$\mathrm{PC} \leqq \mathrm{PO}$,$\mathrm{PC} \leqq \mathrm{PA}$,$\mathrm{PC} \leqq \mathrm{PB}$を満たす点$\mathrm{P}$の存在する範囲は$3$点$(0,\ 1)$,$(2,\ [ウ])$,$([エ],\ [オ])$を頂点とする三角形の内部および周であり,この三角形の面積は$[カ]$である.
(2)平面上に$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$があり,点$\mathrm{O}$を定点として,$2$点$\mathrm{A}$,$\mathrm{B}$は次の条件を満たしながら動く.

$\angle \mathrm{AOB}=60^\circ$
$|\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}|^2+|\overrightarrow{\mathrm{OA}}-\overrightarrow{\mathrm{OB}}|^2=8$

さらに,点$\mathrm{C}$を$\overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}}$となるようにとるとき,$|\overrightarrow{\mathrm{OC}}|$の最大値は$\sqrt{[キ]}$である.
北海学園大学 私立 北海学園大学 2010年 第5問
$3$次関数$f(x)=x^3+ax^2+bx$は$\displaystyle x=\frac{6-2 \sqrt{3}}{3}$と$\displaystyle x=\frac{6+2 \sqrt{3}}{3}$で極値をとるものとする.このとき,次の問いに答えよ.

(1)定数$a,\ b$の値を求めよ.
(2)$f(x)$の極大値を求めよ.
(3)曲線$y=f(x)$と$x$軸で囲まれた図形の面積を求めよ.
北海学園大学 私立 北海学園大学 2010年 第3問
$3$次関数$f(x)=x^3+ax^2+bx$は$\displaystyle x=\frac{6-2 \sqrt{3}}{3}$と$\displaystyle x=\frac{6+2 \sqrt{3}}{3}$で極値をとるものとする.このとき,次の問いに答えよ.

(1)定数$a,\ b$の値を求めよ.
(2)$f(x)$の極大値を求めよ.
(3)曲線$y=f(x)$と$x$軸で囲まれた図形の面積を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。