タグ「面積」の検索結果

225ページ目:全2409問中2241問~2250問を表示)
茨城大学 国立 茨城大学 2010年 第3問
点$\mathrm{O}$を原点とする座標平面上に$2$点$\mathrm{A}(1,\ 1)$,$\mathrm{B}(1,\ -1)$がある.このとき,以下の各問に答えよ.

(1)実数$s,\ t$によって,$\overrightarrow{\mathrm{OP}}=s\overrightarrow{\mathrm{OA}}+t\overrightarrow{\mathrm{OB}}$で定められる点$\mathrm{P}$を考える.$s,\ t$が$s+2t \leqq 2$,$s \geqq 0$,$t \geqq 0$を満たしながら動くとき,点$\mathrm{P}$の存在する範囲を求めよ.さらに,その範囲が表す図形を図示せよ.
(2)実数$u$によって,$\overrightarrow{\mathrm{OQ}}=(1-u)\overrightarrow{\mathrm{QA}}+2u\overrightarrow{\mathrm{QB}}$で定められる点$\mathrm{Q}$を考える.$u$が$0 \leqq u \leqq 1$を満たしながら動くとき,点$\mathrm{Q}$の存在する範囲を求めよ.さらに,その範囲が表す図形を図示せよ.
(3)(1)で得られた図形が,(2)で得られた図形によって$2$つの図形に分割される.この$2$つの図形の面積をそれぞれ$S,\ T (S \leqq T)$とおくとき,$\displaystyle \frac{S}{T}$の値を求めよ.
秋田大学 国立 秋田大学 2010年 第1問
$n$を自然数とするとき,次の問いに答えよ.

(1)不定積分$\displaystyle \int \pi (x+\pi) \sin \pi x \, dx$を求めよ.
(2)下の図のように,曲線$y = \pi(x+ \pi) \sin \pi x \ (0 \leqq x \leqq 2n-1)$と$x$軸とで囲まれた図形の$x$軸より上側にある部分を,原点側から順にP$_1$,P$_2$,P$_3$,$\cdots$,P$_n$と分けるとき,図形P$_k$の面積$S_k \ (k = 1,\ 2,\ 3,\ \cdots,\ n)$を$k$の式で表せ.
(図は省略)
(3)(2)の$S_k$に対して,$\displaystyle \sum_{k=1}^n S_k$を$n$の式で表せ.
秋田大学 国立 秋田大学 2010年 第2問
$\triangle$OABの面積を$S$とするとき,次の問いに答えよ.

(1)$\displaystyle S=\frac{1}{2}\sqrt{|\overrightarrow{\mathrm{OA}}|^2|\overrightarrow{\mathrm{OB}}|^2-(\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}})^2}$となることを示せ.
(2)$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{AB}}=x,\ \overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{BO}}=y,\ \overrightarrow{\mathrm{BO}} \cdot \overrightarrow{\mathrm{OA}}=z$のとき,$S$を$x,\ y,\ z$の式で表せ.
佐賀大学 国立 佐賀大学 2010年 第4問
$e$は自然対数の底,$a,\ b,\ c$は実数である.放物線$y=ax^2+b$を$C_1$とし,曲線$y=c \log x$を$C_2$とする.$C_1$と$C_2$が点P$(e,\ e)$で接しているとき,次の問いに答えよ.ここで,2つの曲線が点Pで接しているとは,ともに点Pを通り,かつ,その点における接線が一致していることである.

(1)$a,\ b,\ c$の値を求めよ.
(2)$C_1,\ C_2$および$x$軸,$y$軸とで囲まれた図形の面積を求めよ.
茨城大学 国立 茨城大学 2010年 第2問
$p$を$0<p<1$を満たす有理数の定数とし,関数$f(x)$を$f(x)=|x|^p$と定める.以下の各問に答えよ.

(1)曲線$y=f(x)$の概形を描け.
(2)$a$を$0$でない実数の定数とするとき,点$(a,\ f(a))$における曲線$y=f(x)$の接線の方程式を求めよ.また,接線と$x$軸の交点の$x$座標を求めよ.
(3)数列$\{a_n\}$を次のように定める:$a_1=1$とし,$n \geqq 2$のとき$a_n$を点$(a_{n-1},\ f(a_{n-1}))$における曲線$y=f(x)$の接線と$x$軸との交点の$x$座標とする.このとき一般項$a_n$を$n$と$p$を用いて表せ.
(4)(3)で求めた数列$\{a_n\}$について,点$(a_n,\ f(a_n))$における曲線$y=f(x)$の接線と,$x$軸,および直線$x=a_n$とで囲まれた部分の面積を$T_n$とする.$T_n$を$n$と$p$を用いて表せ.
(5)(4)の$T_n \ (n=1,\ 2,\ 3,\ \cdots)$について,無限級数$T_1+T_2+T_3+\cdots$が収束する$p$の範囲を求めよ.また,収束するときの無限級数の値を求めよ.
大阪教育大学 国立 大阪教育大学 2010年 第1問
平面上に,点O,Aを$|\overrightarrow{\mathrm{OA}}|=1$であるようにとる.Oを中心にAを反時計回りに,$\displaystyle \frac{\pi}{6}$回転させた位置にある点をB,$\displaystyle \frac{\pi}{2}$回転させた位置にある点をCとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ \overrightarrow{c}=\overrightarrow{\mathrm{OC}}$と表す.次の問に答えよ.

(1)$\overrightarrow{b}$を$\overrightarrow{a},\ \overrightarrow{c}$を用いて表せ.
(2)$\triangle$OABの面積と$\triangle$OBCの面積をそれぞれ求めよ.
(3)直線ACと直線OBとの交点をDとする.また,Bを通って直線ACに平行な直線と,直線OAとの交点をEとする.$\overrightarrow{d}=\overrightarrow{\mathrm{OD}},\ \overrightarrow{e}=\overrightarrow{\mathrm{OE}}$と表す.このとき,$|\overrightarrow{d}|$と$|\overrightarrow{e}|$をそれぞれ求めよ.
(4)次の式を満たす点Pの存在する領域の面積を求めよ.
\[ \overrightarrow{\mathrm{OP}}=s\overrightarrow{e}+t\overrightarrow{c},\quad (0 \leqq s,\ 0 \leqq t,\ 1 \leqq s+t \leqq 2) \]
茨城大学 国立 茨城大学 2010年 第1問
$\triangle$ABCにおいて$\angle \text{A},\ \angle \text{B},\ \angle \text{C}$の大きさと対辺の長さをそれぞれ$A,\ B,\ C$および$a,\ b,\ c$で表す.$\triangle$ABCの面積を$S$とするとき,以下の各問に答えよ.

(1)$\displaystyle \frac{\sin A}{\sin B \sin C}=\frac{\cos B}{\sin B}+\frac{\cos C}{\sin C}$を示せ.
(2)$\displaystyle \sin A,\ \sin B,\ \sin C,\ \frac{\sin A}{\sin B \sin C}$を$a,\ b,\ c,\ S$で表せ.
(3)$a \geqq b \geqq c$ならば,$\displaystyle \frac{\cos A}{\sin A} \leqq \frac{\cos B}{\sin B} \leqq \frac{\cos C}{\sin C}$となることを示せ.
茨城大学 国立 茨城大学 2010年 第3問
$\triangle \mathrm{ABC}$において$\angle \mathrm{A},\ \angle \mathrm{B},\ \angle \mathrm{C}$の大きさと対辺の長さをそれぞれ$A,\ B,\ C$および$a,\ b,\ c$で表す.$\triangle \mathrm{ABC}$の面積を$S$とし,$3$頂点を通る円の半径を$R$とする.$a \geqq b \geqq c$とするとき以下の各問に答えよ.

(1)$\sin A \geqq \sin B \geqq \sin C$を示せ.
(2)$S=2R^2 \sin A \sin B \sin C$を示せ.
(3)$\displaystyle \frac{a^2}{S},\ \frac{b^2}{S},\ \frac{c^2}{S}$のそれぞれを$\displaystyle \frac{\cos A}{\sin A},\ \frac{\cos B}{\sin B},\ \frac{\cos C}{\sin C}$を用いて表せ.
(4)$\displaystyle \frac{\cos A}{\sin A} \leqq \frac{\cos B}{\sin B} \leqq \frac{\cos C}{\sin C}$を示せ.
(5)$A \geqq B \geqq C$を示せ.
(6)$\displaystyle \frac{a^2}{S} \geqq \frac{4}{\sqrt{3}}$を示せ.
(7)$\triangle \mathrm{ABC}$が正三角形であるためには$\displaystyle \frac{a^2}{S} = \frac{4}{\sqrt{3}}$であることが必要十分であることを示せ.
茨城大学 国立 茨城大学 2010年 第3問
$a,\ b$を正の実数とする.放物線$C_1:y=x^2-a$と放物線$C_2:y=-b(x-2)^2$は,共に,点P$(x_0,\ y_0)$において直線$\ell$に接しているとする.$S_1$を直線$x=0$と放物線$C_1$と接線$\ell$で囲まれた領域の面積とし,$S_2$を直線$x=2$と放物線$C_2$と接線$\ell$で囲まれた領域の面積とするとき,次の各問に答えよ.

(1)$a,\ x_0,\ y_0$を$b$で表せ.
(2)面積の比$S_1:S_2$を$b$で表せ.
福島大学 国立 福島大学 2010年 第3問
曲線$C:y=x^3+2ax^2+bx$と直線$\ell:y=ax$が$x \geqq 0$で定義されており,原点以外でこれらの曲線$C$と直線$\ell$が接するものとする.次の問いに答えなさい.なお,$a \neq 0$とする.

(1)曲線$C$と直線$\ell$との共有点が二つあることを示し,それらの共有点の座標を求めなさい.また,$a$のとりうる値の範囲を求めなさい.
(2)曲線$C$と直線$\ell$で囲まれる面積を$S_1$,これら二つの共有点と点$(0,\ -1)$からなる三角形の面積を$S_2$とする.$S_1=S_2$となる$a$の値を求めなさい.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。