タグ「面積」の検索結果

221ページ目:全2409問中2201問~2210問を表示)
熊本大学 国立 熊本大学 2010年 第1問
原点をOとし,空間内に3点A$(4,\ 0,\ 0)$,B$(1,\ 2,\ 0)$,C$(2,\ 1,\ 2)$をとる.線分BCを$t:(1-t) \ (0<t<1)$に内分する点をPとおく.このとき,以下の問いに答えよ.

(1)$\triangle$OAPの面積を最小にする$t$の値を求めよ.
(2)Cを通り,3点O,A,Pを通る平面に垂直な直線と$xy$平面との交点をDとする.Dが$\triangle$OABの内部にあるとき,$t$の範囲を求めよ.
長崎大学 国立 長崎大学 2010年 第3問
$\displaystyle \angle \text{A}=\frac{\pi}{2},\ \angle \text{B}=\alpha$である$\triangle$ABCを考える.$\triangle$ABCの外接円の半径を$R$とする.この外接円上の点Pが,点Aを含まない弧BC上を動くものとする.$\displaystyle \angle \text{BAP}=\theta \ (0<\theta<\frac{\pi}{2})$とするとき,次の問いに答えよ.

(1)$\triangle$ABPの面積の最大値を$R,\ \alpha$を用いて表せ.
(2)$\triangle$BPCの面積を$R,\ \theta$を用いて表せ.
(3)$\displaystyle \alpha=\frac{\pi}{3}$とする.$\triangle$ABPと$\triangle$BPCの面積の和$S$の最大値を求めよ.
宮崎大学 国立 宮崎大学 2010年 第5問
座標平面上に2つの円
\begin{eqnarray}
& & C_1:(x+1)^2+(y-1)^2=1 \nonumber \\
& & C_2:(x-1)^2+(y-1)^2=1 \nonumber
\end{eqnarray}
がある.不等式$y>2$が表す領域$D$内に点P$(a,\ b)$をとる.点Pから円$C_1,\ C_2$にひいた接線と$x$軸との交点をそれぞれA,Bとする.ただし,下図のように$\triangle$PABは円$C_1,\ C_2$をともに含むものとする.このとき,次の各問に答えよ.

(1)$b$を定数とするとき,辺ABの長さが最小となるのは$a=0$のときであることを示せ.
(2)点Pが領域$D$内を動くとき,$\triangle$PABの面積の最小値を求めよ.


\setlength\unitlength{1truecm}
(図は省略)
熊本大学 国立 熊本大学 2010年 第2問
曲線$C:x^2+y^2=1 \ (x \geqq 0,\ y \geqq 0)$上に3点A$\displaystyle \left( \frac{\sqrt{3}}{2},\ \frac{1}{2} \right)$,P$(1,\ 0)$,Q$(0,\ 1)$をとり,$\displaystyle \angle \text{POR}=\theta \ \left( 0<\theta < \frac{\pi}{4} \right)$となる$C$上の点をR$(s,\ t)$とする.さらに,$C$上の点Xを2つのベクトル$s \overrightarrow{\mathrm{OA}}-t\overrightarrow{\mathrm{OX}}$と$t \overrightarrow{\mathrm{OA}}-s\overrightarrow{\mathrm{OX}}$が垂直になるようにとる.このとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OX}}$の内積の値を$\theta$を用いて表せ.
(2)条件をみたすXが弧AP上にとれるとき,$\theta$の範囲を求めよ.
(3)(2)で求めた$\theta$の範囲において,$\triangle$ROXの面積の最大値を求めよ.
鳥取大学 国立 鳥取大学 2010年 第1問
次の問いに答えよ.

(1)直線$2x+y=16 \cdots\cdots ①,\ 2x+3y=24 \cdots\cdots ②$の$x$切片と$y$切片の座標をそれぞれ求めよ.
(2)(1)で定めた直線$①$と$②$との交点の座標を求めよ.
(3)$4$つの不等式$2x+y \leqq 16,\ 2x+3y \leqq 24,\ x \geqq 0,\ y \geqq 0$の表す領域を$F$とする.$F$の面積を求めよ.
(4)点$(x,\ y)$が(3)で定めた領域$F$を動くとき,$x+y$の最大値と最小値を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2010年 第3問
$xy$平面において,次の円$C$と楕円$E$を考える.
\begin{eqnarray}
& & C:x^2+y^2=1 \nonumber \\
& & E:x^2+\frac{y^2}{2}=1 \nonumber
\end{eqnarray}
また,$C$上の点$\mathrm{P}(s,\ t)$における$C$の接線を$\ell$とする.このとき以下の各問いに答えよ.

(1)$\ell$の方程式を$s,\ t$を用いて表せ.
以下,$t>0$とし,$E$が$\ell$から切り取る線分の長さを$L$とする.
(2)$L$を$t$を用いて表せ.
(3)$\mathrm{P}$が動くとき,$L$の最大値を求めよ.
(4)$L$が(3)で求めた最大値をとるとき,$\ell$と$E$が囲む領域のうち,原点を含まない領域の面積を$A$とする.$A$の値を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2010年 第3問
$xy$平面において,次の円$C$と楕円$E$を考える.
\begin{eqnarray}
& & C:x^2+y^2=1 \nonumber \\
& & E:x^2+\frac{y^2}{2}=1 \nonumber
\end{eqnarray}
また,$C$上の点P$(s,\ t)$における$C$の接線を$\ell$とする.このとき以下の各問いに答えよ.

(1)$\ell$の方程式を$s,\ t$を用いて表せ.
以下,$t>0$とし,$E$が$\ell$から切り取る線分の長さを$L$とする.
(2)$L$を$t$を用いて表せ.
(3)Pが動くとき,$L$の最大値を求めよ.
(4)$L$が(3)で求めた最大値をとるとき,$\ell$と$E$が囲む領域のうち,原点を含まない領域の面積を$A$とする.$A$の値を求めよ.
名古屋工業大学 国立 名古屋工業大学 2010年 第3問
実数$k$を$0<k<2$とし,2曲線
\begin{eqnarray}
& & C_1:y=\sin 2x \quad (0 \leqq x \leqq \pi) \nonumber \\
& & C_2:y=k\cos x \quad (0 \leqq x \leqq \pi) \nonumber
\end{eqnarray}
を考える.$C_1$と$C_2$および2直線$x=0,\ x=\pi$で囲まれた4つの部分の面積の和を$S(k)$とする.

(1)$S(k)$を求めよ.
(2)$S(k)$の最小値とそのときの$k$を求めよ.
福井大学 国立 福井大学 2010年 第1問
座標平面上に4点O$(0,\ 0)$,A$(4,\ 0)$,B$(4,\ 4)$,C$(0,\ 4)$をとり,正方形OABCを考える.点Bを出発点とする2つの動点P,Qが,次の規則に従って動くものとする.

1枚のコインを投げ,
表が出たときには,点Pは辺AB上を点Aの方向に1進み,点Qは動かない.
裏が出たときには,点Qは辺BC上を点Cの方向に1進み,点Pは動かない.

この試行を4回繰り返し,その結果できる三角形OPQの面積を得点とするゲームを行う.以下の問いに答えよ.

(1)ゲームの終了時に,点Pの座標が$(4,\ 1)$である確率を求めよ.
(2)このゲームの得点が8となる確率を求めよ.
(3)このゲームの得点の期待値を求めよ.
徳島大学 国立 徳島大学 2010年 第1問
放物線$\displaystyle y=\frac{2}{3}x^2$を$C_1$とし,円$x^2+y^2=1$の$y \geqq 0$を満たす部分を$C_2$とする.$C_1$と$C_2$の交点をP,Qとし,原点をOとする.

(1)P,Qの座標を求めよ.
(2)扇形OPQの面積を求めよ.
(3)$C_1$と$C_2$で囲まれた図形の面積を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。