タグ「面積」の検索結果

220ページ目:全2409問中2191問~2200問を表示)
三重大学 国立 三重大学 2010年 第2問
平面上の点A$(-3,\ -1)$,B$(-1,\ -2)$,C$(3,\ 1)$,D$(0,\ 5)$を考える.またEを線分ACとBDの交点とする.このとき次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AC}}$の大きさおよび$\cos \angle\text{BAC}$の値を求めよ.
(2)$\overrightarrow{\mathrm{BD}}=\alpha \overrightarrow{\mathrm{BA}}+\beta \overrightarrow{\mathrm{BC}}$を満たす定数$\alpha,\ \beta$を求めよ.また比$\text{AE}:\text{EC}$を求めよ.
(3)$\triangle$ABEと$\triangle$CDEの面積の和を$S_1$,$\triangle$BCEと$\triangle$DAEの面積の和を$S_2$とするとき,比$S_1:S_2$を求めよ.
三重大学 国立 三重大学 2010年 第3問
$k$は正の定数とし,$f(x)=e^{k \sin x}\cos x$とする.曲線$C$を,$y=f(x)$のグラフの$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$に対応する部分とする.

(1)$t$の関数$g(t)$は,$f^{\prime}(x)=e^{k \sin x}g(\sin x)$を満たすものとする.このとき$g(t)$を求め,さらに$-1 \leqq t \leqq 1$の範囲における$g(t)=0$の解を求めよ.
(2)$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$において$f(x)$が最大となるときの$f(x)^2$の値を求めよ.
(3)曲線$C$と$x$軸に囲まれた部分の面積を求めよ.
長崎大学 国立 長崎大学 2010年 第1問
$a,\ b$は実数で,$a>1$とする.$t$の関数
\[ f(t)=2t^3-3(a+1)t^2+6at+b \]
について,次の問いに答えよ.

(1)関数$f(t)$の極値を,$a,\ b$を用いて表せ.
(2)$a$の値を$x$座標,$b$の値を$y$座標とする$xy$平面上の点P$(a,\ b)$を考える.このとき,3次方程式$f(t)=0$が相異なる3つの実数解をもつような点P$(a,\ b)$の存在する領域$D$を$xy$平面上に図示せよ.
(3)$D$および$D$の境界からなる領域を$E$とする.領域$E$のうち,
\[ y \leqq -x^2+4x-11 \]
を満たす部分の面積を求めよ.
三重大学 国立 三重大学 2010年 第3問
$y=\sin 2x+\cos x$のグラフの$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$に対応する部分を$C$とする.また点$\displaystyle \left( \frac{\pi}{2},\ 0 \right)$におけるグラフの接線を$\ell$とする.このとき次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の範囲で曲線$C$が$\ell$の上側になる部分はないことを示せ.
(3)曲線$C$,直線$\ell$および$y$軸で囲まれる図形の面積を求めよ.
三重大学 国立 三重大学 2010年 第3問
平面上の点A$(-3,\ -1)$,B$(-1,\ -2)$,C$(3,\ 1)$,D$(0,\ 5)$を考える.またEを線分ACとBDの交点とする.このとき次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AC}}$の大きさおよび$\cos \angle\text{BAC}$の値を求めよ.
(2)$\overrightarrow{\mathrm{BD}}=\alpha \overrightarrow{\mathrm{BA}}+\beta \overrightarrow{\mathrm{BC}}$を満たす定数$\alpha,\ \beta$を求めよ.また比$\text{AE}:\text{EC}$を求めよ.
(3)$\triangle$ABEと$\triangle$CDEの面積の和を$S_1$,$\triangle$BCEと$\triangle$DAEの面積の和を$S_2$とするとき,比$S_1:S_2$を求めよ.
三重大学 国立 三重大学 2010年 第4問
$0<m<1$とする.$f(x)=x^2,\ g(x)=mx$とおく.この$f(x)$と$g(x)$を$0 \leqq x \leqq 1$の範囲で考える.

(1)放物線$y=f(x)$と直線$y=g(x)$および直線$x=1$で囲まれるふたつの図形の面積の和を$S(m)$とする.$S(m)$を最小にする$m$とそのときの値を求めよ.
(2)$0 \leqq x \leqq 1$の範囲での$|f(x)-g(x)|$の最大値を$h(m)$とする.$h(m)$を最小にする$m$とそのときの値を求めよ.
三重大学 国立 三重大学 2010年 第3問
平面上の点A$(-3,\ -1)$,B$(-1,\ -2)$,C$(3,\ 1)$,D$(0,\ 5)$を考える.またEを線分ACとBDの交点とする.このとき次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AC}}$の大きさおよび$\cos \angle\text{BAC}$の値を求めよ.
(2)$\overrightarrow{\mathrm{BD}}=\alpha \overrightarrow{\mathrm{BA}}+\beta \overrightarrow{\mathrm{BC}}$を満たす定数$\alpha,\ \beta$を求めよ.また比$\text{AE}:\text{EC}$を求めよ.
(3)$\triangle$ABEと$\triangle$CDEの面積の和を$S_1$,$\triangle$BCEと$\triangle$DAEの面積の和を$S_2$とするとき,比$S_1:S_2$を求めよ.
三重大学 国立 三重大学 2010年 第4問
$\displaystyle y=\sin 2x-x+\frac{\pi}{2}$のグラフの$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$に対応する部分を$C$とする.また点$\displaystyle \left( \frac{\pi}{2},\ 0 \right)$におけるグラフの接線を$\ell$とする.このとき次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の範囲で曲線$C$が$\ell$の上側になる部分はないことを示せ.
(3)曲線$C$,直線$\ell$および$y$軸で囲まれる図形の面積を求めよ.
三重大学 国立 三重大学 2010年 第5問
$0<m<1$とする.$f(x)=x^2,\ g(x)=mx$とおく.この$f(x)$と$g(x)$を$0 \leqq x \leqq 1$の範囲で考える.

(1)放物線$y=f(x)$と直線$y=g(x)$および直線$x=1$で囲まれるふたつの図形の面積の和を$S(m)$とする.$S(m)$を最小にする$m$とそのときの値を求めよ.
(2)$0 \leqq x \leqq 1$の範囲での$|f(x)-g(x)|$の最大値を$h(m)$とする.$h(m)$を最小にする$m$とそのときの値を求めよ.
宮崎大学 国立 宮崎大学 2010年 第3問
座標平面上に点A$(0,\ 2)$と曲線$C:y=x^2$がある.
曲線$C$上に点P$(a,\ a^2) \ (1 \leqq a <2)$をとる.また,点Pを通り傾き1の直線と曲線$C$との交点のうち,点Pと異なる点をQとする.$\triangle$PAQの面積を$S$とおくとき,次の各問に答えよ.

(1)$S$を,$a$を用いて表せ.
(2)$S$の最大値とそのときの$a$の値を求めよ.
(3)直線PQと曲線$C$で囲まれる部分の面積が,$S$と等しくなる$a$の値を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。