タグ「面積」の検索結果

219ページ目:全2409問中2181問~2190問を表示)
香川大学 国立 香川大学 2010年 第1問
点Oを中心とし,半径1の円に内接する$\triangle$ABCが
\[ \overrightarrow{\mathrm{OA}}+\sqrt{3} \; \overrightarrow{\mathrm{OB}}+2 \; \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}} \]
をみたしている.このとき,次の問に答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}, \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}$を求めよ.
(2)$\angle \text{AOB},\ \angle \text{AOC}$を求めよ.
(3)$\triangle$ABCの面積を求めよ.
(4)辺BCの長さ,および頂点Aから対辺BCに引いた垂線の長さを求めよ.
富山大学 国立 富山大学 2010年 第2問
曲線$\displaystyle C_1:y=\sin 2x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と$x$軸で囲まれた図形が,曲線$\displaystyle C_2:y= k\cos x \ \left( 0 \leqq x \leqq \frac{\pi}{2},\ k \text{は正の定数} \right)$によって2つの部分に分割されているとする.そのうちの,$C_1$と$C_2$で囲まれた部分の面積を$S_1$とし,$C_1$と$C_2$および$x$軸で囲まれた部分の面積を$S_2$とする.このとき,次の問いに答えよ.

(1)2曲線$C_1,\ C_2$の,点$\displaystyle \left( \frac{\pi}{2},\ 0 \right)$と異なる交点の$x$座標を$\alpha$とするとき,$k$を$\alpha$を用いて表せ.
(2)$S_1$を$\alpha$を用いて表せ.
(3)$S_1=2S_2$のとき,$k$の値を求めよ.
富山大学 国立 富山大学 2010年 第1問
曲線$\displaystyle C_1:y=\sin 2x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と$x$軸で囲まれた図形が,曲線$\displaystyle C_2:y= k\cos x \ \left( 0 \leqq x \leqq \frac{\pi}{2},\ k \text{は正の定数} \right)$によって2つの部分に分割されているとする.そのうちの,$C_1$と$C_2$で囲まれた部分の面積を$S_1$とし,$C_1$と$C_2$および$x$軸で囲まれた部分の面積を$S_2$とする.このとき,次の問いに答えよ.

(1)2曲線$C_1,\ C_2$の,点$\displaystyle \left( \frac{\pi}{2},\ 0 \right)$と異なる交点の$x$座標を$\alpha$とするとき,$k$を$\alpha$を用いて表せ.
(2)$S_1$を$\alpha$を用いて表せ.
(3)$S_1=2S_2$のとき,$k$の値を求めよ.
香川大学 国立 香川大学 2010年 第2問
$a$を正の実数とし,$f(x)=x^3-3a^2x$とおく.曲線$C:y=f(x)$の原点Oにおける接線を$\ell_1$,原点以外の任意の点P$(p,\ f(p))$における接線を$\ell_2$とし,2つの直線$\ell_1,\ \ell_2$の交点をQとする.このとき,次の問に答えよ.

(1)2直線$\ell_1,\ \ell_2$の方程式を求めよ.
(2)点Qの座標を求めよ.
(3)$\triangle$OPQは曲線$C$によって2つの部分に分けられる.このうち,曲線$C$と線分OPで囲まれた図形の面積を$S$,曲線$C$と2直線$\ell_1,\ \ell_2$で囲まれた図形の面積を$T$とするとき,比$S:T$は一定であることを示せ.
岐阜大学 国立 岐阜大学 2010年 第5問
$a$を正の実数とし,$b$を負の実数とする.$xy$平面上の直線$C_1:y=x$と放物線$C_2:y=ax^2+bx$を考える.$C_1$と$C_2$は2点で交わっており,$C_1$と$C_2$の囲む図形の面積を$S$とする.以下の問に答えよ.

(1)$a$を$S$と$b$を用いて表せ.
(2)$C_1$と$C_2$の交点の座標を$(p_1,\ q_1) ,\ (p_2,\ q_2) \ (\text{ここで}p_1<p_2)$とし,$L=p_2-p_1$とおく.$p_1 \leqq x \leqq p_2$における$ax^2+bx$の最小値の絶対値を$T$とする.$S$の値が一定になるように$a$と$b$を変化させたとき,$\displaystyle \frac{T-L}{L^3}$の最小値を$S$を用いて表せ.
岐阜大学 国立 岐阜大学 2010年 第4問
$xy$平面上で曲線$C:y=\log x$を考える.$p$を正の実数とし,$C$上の点$(p,\ \log p)$における接線を$\ell_p$で表す.以下の問に答えよ.

(1)接線$\ell_p$の方程式を求めよ.
(2)$0<p<1$の範囲で$p$を変化させたとき,接線$\ell_p$と$x$軸,$y$軸で囲まれた図形の面積の最大値を求めよ.
(3)$0<p<1$とする.接線$\ell_p$と$x$軸,曲線$C$で囲まれた図形を$x$軸のまわりに1回転させてできる回転体の体積を求めよ.
徳島大学 国立 徳島大学 2010年 第3問
$a>0$とする.曲線$y=\log x$と直線$y=x$および2直線$x=a,\ x=a+1$で囲まれた部分の面積を$S$とする.

(1)$x>0$のとき,$x > \log x$であることを示せ.
(2)$S$を$a$で表せ.
(3)$a$が$a>0$の範囲を動くとき,$S$の最小値を求めよ.
富山大学 国立 富山大学 2010年 第3問
$xyz$空間内の6つの平面$x=0,\ x=1,\ y=0,\ y=1,\ z=0,\ z=1$によって囲まれた立方体を$P$とおく.$P$を$x$軸のまわりに1回転してできる立体を$P_x$とし,$P$を$y$軸のまわりに1回転してできる立体を$P_y$とする.さらに,$P_x$と$P_y$の少なくとも一方に属する点全体でできる立体を$Q$とする.このとき,次の問いに答えよ.

(1)$Q$と平面$z=t$が交わっているとする.このとき,$P_x$を平面$z=t$で切ったときの切り口を$R_x$とし,$P_y$を平面$z=t$で切ったときの切り口を$R_y$とする.$R_x$の面積,$R_y$の面積,および$R_x$と$R_y$の共通部分の面積を求めよ.
(2)$Q$と平面$z=t$が交わっているとき,$Q$を平面$z=t$で切ったときの切り口の面積$S(t)$を求めよ.
(3)$Q$の体積を求めよ.
香川大学 国立 香川大学 2010年 第3問
原点をOとする.$A=\left( \begin{array}{cc}
1 & 2 \\
2 & 1
\end{array} \right)$で表される移動を$f$とし,$f$により点$\mathrm{P}(\cos \theta,\ \sin \theta)$は点$\mathrm{Q}$に移るとする.ただし,$0<\theta<\pi$とする.このとき,次の問に答えよ.

(1)線分$\mathrm{OQ}$の長さのとりうる値の範囲を求めよ.
(2)$\triangle \mathrm{OPQ}$の面積の最大値およびそのときの$\theta$の値を求めよ.
(3)点$\mathrm{P}$から直線$\mathrm{OQ}$に引いた垂線の長さを$\theta$を用いて表せ.
(4)$\mathrm{P}_1=\mathrm{P},\ \mathrm{P}_2=\mathrm{Q}$とし,$f$により点$\mathrm{P}_{n-1}$が移る点を$\mathrm{P}_n \ (n=3,\ 4,\ 5,\ \cdots)$とおく.点$\mathrm{P}_1,\ \mathrm{P}_2,\ \mathrm{P}_3,\ \cdots,\ \mathrm{P}_n,\ \cdots$が1直線上にあるとき,$\theta$の値を求めよ.
徳島大学 国立 徳島大学 2010年 第1問
$a>0$とする.曲線$y=\log x$と直線$y=x$および2直線$x=a,\ x=a+1$で囲まれた部分の面積を$S$とする.

(1)$x>0$のとき,$x > \log x$であることを示せ.
(2)$S$を$a$で表せ.
(3)$a$が$a>0$の範囲を動くとき,$S$の最小値を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。