タグ「面積」の検索結果

218ページ目:全2409問中2171問~2180問を表示)
筑波大学 国立 筑波大学 2010年 第4問
点Oを原点とする座標平面上に,2点A$(1,\ 0)$,B$(\cos \theta,\ \sin \theta) \ (90^\circ<\theta<180^\circ)$をとり,以下の条件をみたす2点C,Dを考える.
\[ \overrightarrow{\mathrm{OA}}\cdot \overrightarrow{\mathrm{OC}}=1, \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OD}}=0, \overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}=0, \overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OD}}=1 \]
また,$\triangle$OABの面積を$S_1$,$\triangle$OCDの面積を$S_2$とおく.

(1)ベクトル$\overrightarrow{\mathrm{OC}},\ \overrightarrow{\mathrm{OD}}$の成分を求めよ.
(2)$S_2=2S_1$が成り立つとき,$\theta$と$S_1$の値を求めよ.
(3)$S=4S_1+3S_2$を最小にする$\theta$と,そのときの$S$の値を求めよ.
島根大学 国立 島根大学 2010年 第1問
公正に作られた$n$枚のコインを同時に投げるとき,表が出た枚数を$k$で表す.この$n,\ k$を用いて,放物線$C$と直線$\ell$を
\begin{eqnarray}
& & C:y=(x-k)^2+n-k, \nonumber \\
& & \ell:y=x+n-k \nonumber
\end{eqnarray}
で定めるとき,次の問いに答えよ.

(1)$C$と$\ell$が異なる2つの交点をもつ確率を求めよ.
(2)$C$と$\ell$で囲まれた図形の面積$S$を$k$を用いて表せ.
(3)$n=3$のとき,$\displaystyle (6S)^{\frac{2}{3}}$の期待値を求めよ.
徳島大学 国立 徳島大学 2010年 第1問
放物線$\displaystyle y=\frac{2}{3}x^2$を$C_1$とし,円$x^2+y^2=1$の$y \geqq 0$を満たす部分を$C_2$とする.$C_1$と$C_2$の交点をP,Qとし,原点をOとする.

(1)P,Qの座標を求めよ.
(2)扇形OPQの面積を求めよ.
(3)$C_1$と$C_2$で囲まれた図形の面積を求めよ.
愛媛大学 国立 愛媛大学 2010年 第3問
$f(x)=x^2-2|x|-1$とする.

(1)関数$y=f(x)$のグラフをかけ.
(2)曲線$y=f(x)$と直線$y=3x+5$の交点の座標を求めよ.
(3)曲線$y=f(x)$と直線$y=3x+5$で囲まれた図形の面積を求めよ.
富山大学 国立 富山大学 2010年 第2問
$xyz$空間内の6つの平面$x=0,\ x=1,\ y=0,\ y=1,\ z=0,\ z=1$によって囲まれた立方体を$P$とおく.$P$を$x$軸のまわりに1回転してできる立体を$P_x$とし,$P$を$y$軸のまわりに1回転してできる立体を$P_y$とする.さらに,$P_x$と$P_y$の少なくとも一方に属する点全体でできる立体を$Q$とする.このとき,次の問いに答えよ.

(1)$Q$と平面$z=t$が交わっているとする.このとき,$P_x$を平面$z=t$で切ったときの切り口を$R_x$とし,$P_y$を平面$z=t$で切ったときの切り口を$R_y$とする.$R_x$の面積,$R_y$の面積,および$R_x$と$R_y$の共通部分の面積を求めよ.
(2)$Q$と平面$z=t$が交わっているとき,$Q$を平面$z=t$で切ったときの切り口の面積$S(t)$を求めよ.
(3)$Q$の体積を求めよ.
香川大学 国立 香川大学 2010年 第1問
点Oを中心とし,半径1の円に内接する$\triangle$ABCが
\[ \overrightarrow{\mathrm{OA}}+\sqrt{3} \; \overrightarrow{\mathrm{OB}}+2 \; \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}} \]
をみたしている.このとき,次の問に答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}, \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}$を求めよ.
(2)$\angle \text{AOB},\ \angle \text{AOC}$を求めよ.
(3)$\triangle$ABCの面積を求めよ.
(4)辺BCの長さ,および頂点Aから対辺BCに引いた垂線の長さを求めよ.
琉球大学 国立 琉球大学 2010年 第4問
$a>0$とし,
\[ f(x)=a^2(x+1)e^{-ax} \]
とおく.

(1)関数$f(x)$の最大値とそのときの$x$の値を求めよ.
(2)(1)で求めた$x$の値を$c$とする.曲線$y=f(x)$と$x$軸,$y$軸および直線$x=c$で囲まれた図形の面積を$S(a)$とする.$0<a<1$における$S(a)$の最大値とそのときの$a$の値を求めよ.ただし,$e>2$であることを証明なしに用いてよい.
奈良女子大学 国立 奈良女子大学 2010年 第3問
曲線$y=2x \sin x \cos x$を$C_1$とし,曲線$y=x \cos x$を$C_2$とする.以下の問いに答えよ.

(1)$\displaystyle 0 \leqq x \leqq \frac{\pi}{4}$において,$C_1$と$C_2$の交点の$x$座標をすべて求めよ.
(2)(1)で求めた$x$座標の中で最大の値を$a$とする.区間$[\,0,\ a \,]$において,$C_1$と$C_2$で囲まれた部分の面積を求めよ.
奈良女子大学 国立 奈良女子大学 2010年 第4問
三角形OABにおいて,辺OAを$1:2$に内分する点をM,辺OBを$3:2$に内分する点をNとする.さらに,線分ANと線分BMの交点をXとするとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OX}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$を用いて表せ.
(2)直線OXと辺ABの交点をYとするとき,$\text{AY}:\text{YB}$を求めよ.
(3)三角形OABの面積を$S$とし,(2)のYに対して三角形MNYの面積を$T$とする.$S:T$を求めよ.
香川大学 国立 香川大学 2010年 第1問
点Oを中心とし,半径1の円に内接する$\triangle$ABCが
\[ \overrightarrow{\mathrm{OA}}+\sqrt{3} \; \overrightarrow{\mathrm{OB}}+2 \; \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}} \]
をみたしている.このとき,次の問に答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}, \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}$を求めよ.
(2)$\angle \text{AOB},\ \angle \text{AOC}$を求めよ.
(3)$\triangle$ABCの面積を求めよ.
(4)辺BCの長さ,および頂点Aから対辺BCに引いた垂線の長さを求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。