タグ「面積」の検索結果

217ページ目:全2409問中2161問~2170問を表示)
千葉大学 国立 千葉大学 2010年 第2問
1辺の長さが2の正六角形$\mathrm{A}_1 \mathrm{A}_2 \mathrm{A}_3 \mathrm{A}_4 \mathrm{A}_5 \mathrm{A}_6$ を考える.さいころを3回投げ,出た目を順に$i,\ j,\ k$とするとき,$\triangle \mathrm{A}_i \mathrm{A}_j \mathrm{A}_k$の面積を2乗した値を得点とする試行を行う.ただし,$i,\ j,\ k$の中に互いに等しい数があるときは,得点は0であるとする.

(1)得点が0となる確率を求めよ.
(2)得点が27となる確率を求めよ.
(3)得点の期待値を求めよ.
千葉大学 国立 千葉大学 2010年 第3問
$\triangle \mathrm{ABC}$において,頂点$\mathrm{A}$から直線$\mathrm{BC}$に下ろした垂線の長さは1,頂点$\mathrm{B}$から直線$\mathrm{CA}$に下ろした垂線の長さは$\sqrt{2}$,頂点$\mathrm{C}$から直線$\mathrm{AB}$に下ろした垂線の長さは2である.このとき,$\triangle \mathrm{ABC}$の面積と,内接円の半径,および,外接円の半径を求めよ.
千葉大学 国立 千葉大学 2010年 第5問
放物線$y=x^2$と直線$y=ax+b$によって囲まれる領域を
\[ D=\{(x,\ y) \; | \; x^2 \leqq y \leqq ax+b \} \]
とし,$D$の面積が$\displaystyle \frac{9}{2}$であるとする.座標平面上で,$x$座標,$y$座標が共に整数である点を格子点と呼ぶ.

(1)$a=0$のとき,$D$に含まれる格子点の個数を求めよ.
(2)$a,\ b$が共に整数であるとき,$D$に含まれる格子点の個数は,$a,\ b$の値によらず一定であることを示せ.
東京大学 国立 東京大学 2010年 第1問
Oを原点とする座標平面上に点A$(-3,\ 0)$をとり,
$0^\circ<\theta<120^\circ$の範囲にある$\theta$に対して,次の条件(i),(ii)をみたす2点B,Cを考える.

\mon[(i)] Bは$y>0$の部分にあり,$\text{OB}=2$かつ$\angle \text{AOB}=180^\circ-\theta$である.
\mon[(ii)] Cは$y<0$の部分にあり,$\text{OC}=1$かつ$\angle \text{BOC}=120^\circ$である.ただし$\triangle \text{ABC}$はOを含むものとする.

\quad 次の問(1),(2)に答えよ.

(1)$\triangle \text{OAB}$と$\triangle \text{OAC}$の面積が等しいとき,$\theta$の値を求めよ.
(2)$\theta$を$0^\circ<\theta<120^\circ$の範囲で動かすとき,$\triangle \text{OAB}$と$\triangle \text{OAC}$の面積の和の最大値と,そのときの$\sin \theta$の値を求めよ.
信州大学 国立 信州大学 2010年 第1問
$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の範囲で関数$f(x)=\cos x \sin^2 x$と$g(x)=\cos^3 x$を考える.次の問に答えよ.

(1)$f(x)$の極値を求めよ.ただし,$f(x)$が極値をとるときの$x$の値は求めなくてよい.
(2)$y=f(x)$と$y=g(x)$のグラフで囲まれる図形の面積を求めよ.
信州大学 国立 信州大学 2010年 第1問
次の2つの曲線の両方に接する傾きが正の直線$\ell$が原点を通っているとする.
\begin{eqnarray}
& & y = mx^2+a \quad (m > 0,\ a > 0) \nonumber \\
& & y = nx^2+b \quad (n < 0,\ b < 0) \nonumber
\end{eqnarray}
このとき,次の問に答えよ.

(1)$m,\ n,\ a,\ b$の間に成り立つ関係式を求めよ.
(2)曲線$y = mx^2+a$と$\ell$および$y$軸で囲まれた図形の面積を$S_1$とし,曲線$y = nx^2+b$と$\ell$および$y$軸で囲まれた図形の面積を$S_2$とする.$\displaystyle \frac{S_1}{S_2}$を$a,\ b$で表せ.
金沢大学 国立 金沢大学 2010年 第4問
$a \ (a>0)$を定数とし,$f(x)=2a \log x - (\log x)^2$とする.関数$y = f(x)$のグラフは,$x$軸と点P$_1(x_1,\ 0)$,P$_2(x_2,\ 0) \ (x_1<x_2)$で交わっている.次の問いに答えよ.

(1)$x_1,\ x_2$の値を求めよ.また,$y = f(x)$の最大値と,そのときの$x$の値を求めよ.
(2)点P$_1$,P$_2$における$y=f(x)$の接線をそれぞれ$\ell_1,\ \ell_2$とする.$\ell_1$と$\ell_2$の交点の$x$座標を$X(a)$と表すとき,$\displaystyle \lim_{a \to \infty} X(a)$を求めよ.
(3)$a = 1$とするとき,$y = f(x)$のグラフと$x$軸で囲まれた図形の面積を求めよ.
奈良教育大学 国立 奈良教育大学 2010年 第4問
$2$つの曲線$y=\sin x,\ y=\cos 2x$と$2$つの直線$x=0,\ x=2\pi$によって囲まれた部分の面積を求めよ.
岩手大学 国立 岩手大学 2010年 第4問
$2$曲線$y=x^2,\ y=2\sqrt{2x}$で囲まれた図形$D$について,次の問いに答えよ.

(1)図形$D$の面積を求めよ.
(2)図形$D$は直線$y=2$によって二つの図形に分けられる.このとき,それぞれの図形の面積$S_1,\ S_2$を求めよ.ただし,$S_1>S_2$とする.
(3)図形$D$の面積が直線$x=a$によって二等分されるとき,$a^3$の値を求めよ.
岩手大学 国立 岩手大学 2010年 第1問
曲線$y=-x^2+3x$について,以下の問いに答えよ.

(1)曲線$y=-x^2+3x$と$x$軸で囲まれる図形の面積を求めよ.
(2)$a$を$0<a<3$をみたす定数とする.このとき,直線$y=ax$と曲線$y=-x^2+3x$との交点の$x$座標を求めよ.
(3)(1)の図形の面積を二等分する原点を通る直線を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。