タグ「面積」の検索結果

215ページ目:全2409問中2141問~2150問を表示)
金沢大学 国立 金沢大学 2010年 第2問
$a$を正の定数とする.2つの放物線$C_1:y=x^2$と$C_2:y=(x-2)^2+4a$の交点をPとする.次の問いに答えよ.

(1)放物線$C_1$上の点Q$(t,\ t^2)$における接線の方程式を求めよ.さらに,その接線のうち$C_2$に接するものを$\ell$とする.$\ell$の方程式を求めよ.
(2)点Pを通り$y$軸に平行な直線を$m$とする.$\ell$と$m$の交点をRとするとき,線分PRの長さを求めよ.
(3)直線$\ell,\ m$と放物線$C_1$で囲まれた図形の面積を求めよ.
埼玉大学 国立 埼玉大学 2010年 第4問
平面上を運動する点Pの時刻$t$における座標$(x,\ y)$が
\[ x=2t-t^2,\quad y=1-t^2 \quad (0 \leqq t \leqq 1) \]
で与えられている.このとき,点Pの描く曲線を$C$とおく.

(1)$0<t<1$の範囲で,点Pの速さ(速度の大きさ)が最小になる時刻$t$を求めよ.
(2)(1)で求めた時刻$t$に対応する$C$上の点における接線$\ell$の方程式を求めよ.
(3)接線$\ell$と曲線$C$は,接点以外に共有点を持たないことを示せ.
(4)曲線$C$,接線$\ell$および$y$軸で囲まれる図形の面積を求めよ.
広島大学 国立 広島大学 2010年 第1問
$k$は定数で,$k > 0$とする.曲線$C : y = kx^2 \ (x \geqq 0)$と2つの直線$\displaystyle \ell : y = kx+\frac{1}{k},\ m : y = -kx+\frac{1}{k}$との交点の$x$座標をそれぞれ$\alpha,\ \beta \ (0 < \beta < \alpha)$とするとき,次の問いに答えよ.

(1)$\alpha-\beta$の値を求めよ.
(2)$\alpha \beta,\ \alpha^2+ \beta^2$および$\alpha^3- \beta^3$を$k$を用いて表せ.
(3)曲線$C$と2直線$\ell,\ m$とで囲まれた部分の面積を最小にする$k$の値を求めよ.また,そのときの面積を求めよ.
金沢大学 国立 金沢大学 2010年 第3問
Oを原点とする座標平面上の円$C:x^2+y^2=1$と直線$x+2y=1$の交点のうち,$x$座標の小さい方をP,他方をQとする.点P,Qにおける円$C$の接線をそれぞれ$\ell,\ m$とする.次の問いに答えよ.

(1)P,Qの座標を求めよ.また,$\ell$と$m$の交点Rの座標を求めよ.
(2)線分ORと$C$の交点をSとする.Sの座標を求めよ.また,$\triangle$QRSの面積を求めよ.
(3)$\angle \text{PQS}=\angle \text{RQS}$であることを示せ.
九州大学 国立 九州大学 2010年 第3問
$xy$平面上に曲線$\displaystyle y =\frac{1}{x^2}$を描き,この曲線の第1象限内の部分を$C_1$,第2象限内の部分を$C_2$と呼ぶ.$C_1$上の点P$_1 \displaystyle \left( a,\ \frac{1}{a^2} \right)$から$C_2$に向けて接線を引き,$C_2$との接点をQ$_1$とする.次に点Q$_1$から$C_1$に向けて接線を引き,$C_1$との接点をP$_2$とする.次に点P$_2$から$C_2$に向けて接線を引き,接点をQ$_2$とする.以下同様に続けて,C$_1$上の点列P$_n$と$C_2$上の点列Q$_n$を定める.このとき,次の問いに答えよ.

(1)点Q$_1$の座標を求めよ.
(2)三角形P$_1$Q$_1$P$_2$の面積$S_1$を求めよ.
(3)三角形P$_n$Q$_n$P$_{n+1} \ (n = 1,\ 2,\ 3,\ \cdots)$の面積$S_n$を求めよ.
(4)級数$\displaystyle \sum_{n=1}^{\infty} S_n$の和を求めよ.
九州大学 国立 九州大学 2010年 第4問
中心$(0,\ a)$,半径$a$の円を$xy$平面上の$x$軸の上を$x$の正の方向に滑らないように転がす.このとき円上の定点$\mathrm{P}$が原点$(0,\ 0)$を出発するとする.次の問いに答えよ.

(1)円が角$t$だけ回転したとき,点$\mathrm{P}$の座標を求めよ.
(2)$t$が$0$から$2\pi$まで動いて円が一回転したときの点$\mathrm{P}$の描く曲線を$C$とする.曲線$C$と$x$軸とで囲まれる部分の面積を求めよ.
(3)$(2)$の曲線$C$の長さを求めよ.
岩手大学 国立 岩手大学 2010年 第2問
座標平面上に$3$点$\mathrm{A}(1,\ 2)$,$\mathrm{B}(4,\ 11)$,$\mathrm{C}(-1,\ 6)$があるとき,次の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{AC}}$のなす角$\theta$を求めよ.
(2)点$\mathrm{A}$を通り,ベクトル$\overrightarrow{\mathrm{AC}}$を方向ベクトルとする直線上の点を$\mathrm{D}$とする.$\triangle \mathrm{ABD}$の面積が$45$となる点$\mathrm{D}$の座標を求めよ.ただし,$\angle \mathrm{BAD}$は鋭角とする.
(3)線分$\mathrm{AB}$上の点を$\mathrm{E}$とするとき,$\angle \mathrm{ACE}$が$60^\circ$となる点$\mathrm{E}$の座標を求めよ.
弘前大学 国立 弘前大学 2010年 第3問
次の問いに答えよ.

(1)$y = x^2-2x+2$と$y = -x^2 +2| \, x \, |+12$のグラフを同一の座標平面にかけ.
(2)$y = x^2-2x+2$と$y = -x^2 +2| \, x \, |+12$で囲まれる図形の面積を求めよ.
埼玉大学 国立 埼玉大学 2010年 第4問
半径$R$の円$C$の中心を通る直線を$\ell$とする.円$C$上の2点A,Bは弦ABが$\ell$と交わらないように動くものとする.$\ell$を軸として弦ABを回転させてできる図形の面積を$S$とする.ただし,直線$\ell$は円$C$と同一平面上にあるものとする.

(1)弦ABの長さを一定とするならば,弦ABが$\ell$と平行のとき$S$が最大となることを証明せよ.
(2)弦ABの長さが変化するとき,$S$の最大値を求めよ.
金沢大学 国立 金沢大学 2010年 第1問
座標平面において,円$x^2+y^2=1$上の点P$(a,\ b) \ (0<b<1)$における接線を$\ell$とし,$\ell$と$x$軸の交点をQとする.点R$(4,\ 0)$と$\ell$の距離が2であるとき,次の問いに答えよ.

(1)点Pの座標$(a,\ b)$を求めよ.
(2)$\triangle$PQRの面積を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。