タグ「面積」の検索結果

214ページ目:全2409問中2131問~2140問を表示)
京都大学 国立 京都大学 2010年 第1問
次の各問に答えよ.

(1)座標平面上で,点$(1,\ 2)$を通り傾き$a$の直線と放物線$y=x^2$によって囲まれる部分の面積を$S(a)$とする.$a$が$0 \leqq a \leqq 6$の範囲を変化するとき,$S(a)$を最小にするような$a$の値を求めよ.
(2)$\triangle$ABCにおいて$\text{AB}=2,\ \text{AC}=1$とする.$\angle \text{BAC}$の二等分線と辺BCの交点をDとする.$\text{AD}=\text{BD}$となるとき,$\triangle$ABCの面積を求めよ.
弘前大学 国立 弘前大学 2010年 第2問
$a>1$を定数とする.3つの放物線$\displaystyle y=x^2,\ y=\frac{1}{2}x^2,\ y=ax^2$の$x \geqq 0$の部分をそれぞれ,$C,\ C_1,\ C_2$とする.$C$上の点Pから$x$軸に下ろした垂線と2曲線$C,\ C_1$で囲まれた領域を$D_1$とする.Pから$y$軸に下ろした垂線と2曲線$C,\ C_2$で囲まれた領域を$D_2$とする.

(1)領域$D_1,\ D_2$の面積をそれぞれ$S_1,\ S_2$とする.点Pのとり方によらず常に$S_1=S_2$となるような$a$の値を求めよ.
(2)領域$D_1,\ D_2$を$y$軸のまわりに1回転してできる立体の体積をそれぞれ$V_1,\ V_2$とする.点Pのとり方によらず常に$V_1=V_2$となるような$a$の値を求めよ.
山形大学 国立 山形大学 2010年 第1問
$xy$平面上に2つの曲線
\[ C_1:y=\sqrt{3}\sin x (0 \leqq x \leqq 2\pi), \quad C_2:y=\cos x (0 \leqq x \leqq 2\pi) \]
がある.このとき以下の問に答えよ.

(1)曲線$C_1,\ C_2$のグラフをかけ.
(2)$C_1$と$C_2$の交点の座標を求めよ.
(3)$C_1$と$C_2$で囲まれた図形の面積$S$を求めよ.
神戸大学 国立 神戸大学 2010年 第3問
$\displaystyle f(x) =\frac{\log x}{x},\ g(x) = \frac{2 \log x}{x^2} \ (x > 0)$とする.以下の問に答えよ.ただし,自然
対数の底$e$について,$e=2.718 \cdots$であること,$\displaystyle \lim_{x \to \infty} \frac{\log x}{x}=0$であることを証明なしで用いてよい.

(1)2曲線$y = f(x)$と$y = g(x)$の共有点の座標をすべて求めよ.
(2)区間$x>0$において,関数$y = f(x)$と$y = g(x)$の増減,極値を調べ,2曲線$y = f(x),\ y = g(x)$のグラフの概形をかけ.グラフの変曲点は求めなくてよい.
(3)区間$1 \leqq x \leqq e$において,2曲線$y = f(x)$と$y = g(x)$,および直線$x = e$で囲まれた図形の面積を求めよ.
北海道大学 国立 北海道大学 2010年 第1問
$a$を正の実数とし,$2$つの放物線

$C_1:y=x^2$
$C_2:y=x^2-4ax+4a$

を考える.

(1)$C_1$と$C_2$の両方に接する直線$\ell$の方程式を求めよ.
(2)$2$つの放物線$C_1,\ C_2$と直線$\ell$で囲まれた図形の面積を求めよ.
北海道大学 国立 北海道大学 2010年 第1問
$a$を正の実数とし,$2$つの放物線

$C_1:y=x^2$
$C_2:y=x^2-4ax+4a$

を考える.

(1)$C_1$と$C_2$の両方に接する直線$\ell$の方程式を求めよ.
(2)$2$つの放物線$C_1,\ C_2$と直線$\ell$で囲まれた図形の面積を求めよ.
大阪大学 国立 大阪大学 2010年 第1問
曲線$C : y = -x^2-1$を考える.

(1)$t$が実数全体を動くとき,曲線$C$上の点$(t,\ -t^2-1)$を頂点とする放物線
\[ y =\frac{3}{4}(x-t)^2-t^2-1 \]
が通過する領域を$xy$平面上に図示せよ.
(2)$D$を(1)で求めた領域の境界とする.$D$が$x$軸の正の部分と交わる点を$(a,\ 0)$とし,$x = a$での$C$の接線を$\ell$とする.$D$と$\ell$で囲まれた部分の面積を求めよ.
北海道大学 国立 北海道大学 2010年 第4問
直角三角形$\mathrm{ABC}$において,$\displaystyle \angle \mathrm{C}=\frac{\pi}{2},\ \mathrm{AB}=1$であるとする.$\angle \mathrm{B}=\theta$とおく.点$\mathrm{C}$から辺$\mathrm{AB}$に垂線$\mathrm{CD}$を下ろし,点$\mathrm{D}$から辺$\mathrm{BC}$に垂線$\mathrm{DE}$を下ろす.$\mathrm{AE}$と$\mathrm{CD}$の交点を$\mathrm{F}$とする.

(1)$\displaystyle \frac{\mathrm{DE}}{\mathrm{AC}}$を$\theta$で表せ.
(2)$\triangle \mathrm{FEC}$の面積を$\theta$で表せ.
岡山大学 国立 岡山大学 2010年 第4問
$a$を正の実数とする.放物線$P:y = x^2$上の点A$(a,\ a^2)$における接線を$\ell_1$とし,点Aを通り$\ell_1$と直交する直線を$\ell_2$とする.また,$\ell_2$と放物線$P$との交点のうちAではない方をB$(b,\ b^2)$とする.さらに,点Bを通り$\ell_1$に平行な直線を$\ell_3$とし,$\ell_3$と放物線$P$との交点のうちBではない方をC$(c,\ c^2)$とする.

(1)$b+c = 2a$であることを示せ.
(2)放物線$P$と$\ell_3$で囲まれた部分の面積を$S$とする.$S$を$a$を用いて表し,$S$が最小になるときの$S$と$a$の値を求めよ.
静岡大学 国立 静岡大学 2010年 第3問
$a>0$とする.放物線$\displaystyle C : y = \frac{a}{2}x^2$上の点P$\displaystyle \left(1,\ \frac{a}{2} \right)$を通り,Pを通る接線に直交する直線を$\ell$,$y$軸と$\ell$との交点をQとするとき,次の問いに答えよ.

(1)直線$\ell$の方程式を$a$を用いて表せ.
(2)線分PQ,$y$軸および放物線$C$で囲まれる図形の面積を$S_1$とする.$S_1$の値を最小にする$a$の値を求めよ.
(3)直線$\ell$,$y$軸,直線$x = -1$および放物線$C$で囲まれる図形の面積を$S_2$とする.$S_2 = 2S_1$となる$a$の値を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。