タグ「面積」の検索結果

211ページ目:全2409問中2101問~2110問を表示)
名古屋市立大学 公立 名古屋市立大学 2011年 第2問
放物線$C:y=x^2$の点A$(a,\ a^2) \ (a>0)$における法線を$\ell$とする.次の問いに答えよ.

(1)直線$\ell$と放物線$C$で囲まれる図形の面積$S$を求めよ.
(2)直線$\ell$と放物線$C$の2つの交点をA,Bとする.点A,Bにおける$C$の接線の交点Pの座標を求めよ.
大阪府立大学 公立 大阪府立大学 2011年 第2問
平面上に三角形OABがあり,$\text{OA}=3,\ \text{OB}=2,\ \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=-2$であるとする.線分OAを$2:1$の比に内分する点をCとする.また,線分ABを$t:(1-t)$の比に内分する点をPとし,直線OPと直線BCの交点をQとする.ただし,$t$は$0<t<1$を満たす実数である.このとき,次の問いに答えよ.

(1)三角形OABの面積$S$を求めよ.
(2)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}}$および$t$を用いて表せ.また,$\overrightarrow{\mathrm{OQ}}=k\overrightarrow{\mathrm{OP}}$となる実数$k$を$t$を用いて表せ.
(3)三角形OCQの面積が$\sqrt{2}$になるときの$t$の値を求めよ.
名古屋市立大学 公立 名古屋市立大学 2011年 第4問
長方形OAB$_1$C$_1$において$\text{OA}=1,\ \angle \text{AOB}_1=\theta \ (0^\circ<\theta<90^\circ)$とする.図のように,この長方形の対角線OB$_1$を一辺とし,$\angle \text{B}_1 \text{OB}_2=\theta$となる長方形OB$_1$B$_2$C$_2$を反時計回りに作る.同様にして$\angle \text{B}_n \text{OB}_{n+1}=\theta$となる長方形OB$_n$B$_{n+1}$C$_{n+1} \ (n=1,\ 2,\ \cdots)$を作る.次の問いに答えよ.

(1)線分OB$_1$およびB$_1$B$_2$の長さを$\theta$で表せ.
(2)長方形OB$_n$B$_{n+1}$C$_{n+1}$の面積を$n$と$\theta$で表せ.ただしB$_0=\text{A}$とする.
(3)$\theta=30^\circ$のとき,図形OAB$_1$B$_2$B$_3$B$_4$C$_4$の面積$S$を求めよ.


\setlength\unitlength{1truecm}
(図は省略)
愛知県立大学 公立 愛知県立大学 2011年 第2問
方程式$y=-x^2+2x+8$で表される放物線を$C_1$とする.放物線$C_1$と$x$軸とで囲まれた図形の内部にある円で,放物線$C_1$と$x$軸に$3$点で接するものを$C_2$とする.放物線$C_1$と$x$軸との$2$つの交点,および放物線$C_1$の頂点を通る円を$C_3$とする.このとき,以下の問いに答えよ.

(1)円$C_2$の方程式を求めよ.
(2)円$C_3$の面積が円$C_2$の面積の何倍になるか求めよ.
(3)放物線$C_1$の頂点を通り,円$C_2$に接する$2$つの接線の方程式を求めよ.
愛知県立大学 公立 愛知県立大学 2011年 第3問
曲線$C_1:y=p \cos x$,$C_2:y=q \sin x$について,以下の問いに答えよ.ただし,$\displaystyle 0 \leqq x \leqq \frac{\pi}{2},\ p>0,\ q>0$である.

(1)曲線$C_1$と$C_2$の交点の$x$座標を$\alpha$とするとき,$\sin \alpha$と$\cos \alpha$を$p,\ q$で表せ.
(2)曲線$C_1,\ C_2$と$x$軸で囲まれた部分の面積を$S$とするとき,$S$を$p,\ q$で表せ.
(3)$p,\ q$が$p^2+q^2=4$を満たすとき,(2)で求めた面積$S$の最大値を求めよ.
大阪府立大学 公立 大阪府立大学 2011年 第3問
座標平面内において,楕円$\displaystyle x^2+\frac{y^2}{3}=1$の$x \geqq 0,\ y \geqq 0$の部分の曲線を$C$とする.$x_0>0,\ y_0>0$とし,曲線$C$上に点P$(x_0,\ y_0)$をとり,点Pにおける曲線$C$の法線を$\ell$とする.このとき,次の問いに答えよ.

(1)直線$\ell$と$x$軸との交点を$(x_1,\ 0)$とするとき,$x_1$を$x_0,\ y_0$を用いて表せ.
(2)$x_0=\cos \theta,\ y_0=\sqrt{3}\sin \theta$と表す.このとき,曲線$C$と直線$\ell$および$x$軸とで囲まれた部分の面積$S(\theta)$を$\theta$を用いて表せ.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.
(3)$\theta$が$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲を動くとき,(2)で求めた面積$S(\theta)$の最大値を求めよ.
大阪府立大学 公立 大阪府立大学 2011年 第5問
2つの関数$f(t)=t \log t$と$g(t)=t^3-9t^2+24t$が与えられているとき,以下の問いに答えよ.

(1)$f(t)$は$t \geqq 1$の範囲で単調に増加することを示せ.
(2)$t \geqq 1$のとき
\[ \left\{
\begin{array}{l}
x=f(t) \\
y=g(t)
\end{array}
\right. \]
と媒介変数表示される関数$y=h(x)$の$x \geqq 0$の範囲における増減を調べて,極大値と極小値を求めよ.
(3)$xy$平面上で,曲線$y=h(x)$,2直線$x=f(2),\ x=f(4)$と$x$軸で囲まれた部分の面積を求めよ.
会津大学 公立 会津大学 2011年 第1問
$(1)$,$(2)$の問いに答えよ.また,$(3)$から$(5)$までの空欄をうめよ.

(1)次の積分を求めよ.ただし,積分定数は省略してもよい.

(i) $\displaystyle \int x \sin x^2 \, dx=[イ]$
(ii) $\displaystyle \int_0^2 xe^x \, dx=[ロ]$

(2)次の極限を求めよ.
\[ \lim_{n \to \infty} \frac{3^n+4^n}{3^{n+1}+4^{n+1}}=[ハ] \]
(3)$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$において$3 \sin x+\cos 2x+1=0$のとき,$x=[ニ]$である.
(4)$A=\left( \begin{array}{cc}
1 & -2 \\
-3 & 4
\end{array} \right),\ B=\left( \begin{array}{cc}
1 & 2 \\
3 & 4
\end{array} \right)$のとき,$(A+B)(A-B)=[ホ]$である.
(5)Oを原点とする座標空間に2点A$(1,\ 2,\ 1)$,B$(2,\ 2,\ 0)$をとる.このとき,$\cos \angle \text{AOB}=[ヘ]$,$\triangle$AOBの面積は[ト]である.
滋賀県立大学 公立 滋賀県立大学 2011年 第1問
放物線$C_1:y=x^2-4x+a$と曲線$C_2:y=6 \log x$とが点Pで接している.ただし,$a$は実数とする.

(1)$a$の値,およびPの座標を求めよ.
(2)Pにおける$C_1,\ C_2$の接線を$\ell$とする.このとき,$\ell$,$x$軸,および$C_2$で囲まれる部分の面積$S$を求めよ.
滋賀県立大学 公立 滋賀県立大学 2011年 第2問
$x$軸とのなす角が$\displaystyle 2\theta \ \left(0<\theta<\frac{\pi}{4} \right)$で原点Oを通る直線$\ell$と,$x$軸上の定点A$(a,\ 0) \ (a>0)$と$y$軸上の定点B$(0,\ b) \ (b>0)$がある.円$C_1$,円$C_2$は$\ell$と接し,かつ$C_1$は$x$軸とAで接し,$C_2$は$y$軸とBで接するものとする.$C_1$,$C_2$の中心をそれぞれP$_1$,P$_2$とする.ただし,P$_1$,P$_2$は第1象限の点である.

(1)$\triangle$OP$_1$P$_2$の面積は$\displaystyle S=\frac{ab}{\sin 2\theta + \cos 2\theta+1}$であることを示せ.
(2)$\theta$を変数としたとき,$S$の最小値を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。