タグ「面積」の検索結果

205ページ目:全2409問中2041問~2050問を表示)
日本女子大学 私立 日本女子大学 2011年 第4問
点$\mathrm{O}$を中心とし,長さ$2r$の線分$\mathrm{AB}$を直径とする円の周上を動く点$\mathrm{P}$がある.$\triangle \mathrm{ABP}$の面積を$S_1$,扇形$\mathrm{OPB}$の面積を$S_2$とするとき,次の問いに答えよ.

(1)$\displaystyle \angle \mathrm{PAB}=\theta (0<\theta<\frac{\pi}{2})$とするとき,$S_1$と$S_2$を求めよ.
(2)$\mathrm{P}$が$\mathrm{B}$に限りなく近づくとき,$\displaystyle \frac{S_1}{S_2}$の極限値を求めよ.
日本女子大学 私立 日本女子大学 2011年 第1問
曲線$y=e^x$を$C$とする.点$\mathrm{Q}_1$を$x$軸上に取る.点$\mathrm{Q}_1$を通り$y$軸と平行な直線を$\ell_1$とする.$\ell_1$が$C$と交わる点を$\mathrm{P}_1$とする.点$\mathrm{P}_1$における$C$の接線を$\ell_1^\prime$とする.$\ell_1^\prime$が$x$軸と交わる点を$\mathrm{Q}_2$とする.さらに,点$\mathrm{Q}_2$を通り$y$軸と平行な直線を$\ell_2$とする.$\ell_2$が$C$と交わる点を$\mathrm{P}_2$とする.点$\mathrm{P}_2$における$C$の接線を$\ell_2^\prime$とする.$\ell_2^\prime$が$x$軸と交わる点を$\mathrm{Q}_3$とする.これを続けて,$C$上の点$\mathrm{P}_1$,$\mathrm{P}_2$,$\cdots$,$\mathrm{P}_n$,$\cdots$と$x$軸上の点$\mathrm{Q}_1$,$\mathrm{Q}_2$,$\cdots$,$\mathrm{Q}_n$,$\cdots$を決める.$\mathrm{P}_1$の座標を$(a,\ e^a)$とするとき,次の問いに答えよ.

(1)$\mathrm{Q}_n$の$x$座標を求めよ.
(2)$C$と直線$\ell_n^\prime$および$\ell_{n+1}$で囲まれた図形の面積を$s_n$とするとき,無限級数$s_1+s_2+\cdots +s_n+\cdots$の和を求めよ.
関西大学 私立 関西大学 2011年 第3問
$f(x)=2x+3+|x|$と$g(x)=ax^2+bx+c$とは次の$2$つの条件を満たす.ただし,$a,\ b,\ c$は定数とする.

(i) $y=f(x)$のグラフと$y=g(x)$のグラフとは$x=-2$および$x=2$で交わる.
(ii) $y=g(x)$は$\displaystyle x=\frac{1}{2}$において最大値をとる.

このとき,次の$[ ]$を数値でうめよ.

(1)$a=[$①$]$,$b=[$②$]$,$c=[$③$]$である.
(2)$y=g(x)$のグラフの頂点の$y$座標は$[$④$]$である.
(3)$y=f(x)$と$y=g(x)$とで囲まれた図形の面積は$[$⑤$]$である.
神奈川大学 私立 神奈川大学 2011年 第3問
$x$の$2$次関数$\displaystyle f(x)=x^2-2tx+\frac{t^2}{2}-1$について,以下の問いに答えよ.

(1)$x \leqq 1$のとき,$f(x)$の最小値を$g(t)$とする.$g(t)$を$t$の式で表せ.
(2)$s=g(t)$のグラフを座標平面上にえがけ.
(3)$s=g(t)$のグラフと$t$軸および$s$軸によって囲まれた部分の面積を求めよ.
神奈川大学 私立 神奈川大学 2011年 第2問
曲線$\displaystyle C:y=\frac{1}{x} (x>0)$上の点$\displaystyle \mathrm{P} \left( p,\ \frac{1}{p} \right)$における接線を$\ell$とする.接線$\ell$と$x$軸との交点を$\mathrm{Q}$とする.さらに,$\mathrm{Q}$を通り$x$軸に垂直な直線と曲線$C$との交点を$\mathrm{R}$とする.このとき,次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)接線$\ell$と$x$軸および$y$軸とで囲まれた図形の面積を求めよ.
(3)曲線$C$と接線$\ell$および線分$\mathrm{QR}$とで囲まれた図形の面積を求めよ.
神奈川大学 私立 神奈川大学 2011年 第3問
座標平面上で,原点$\mathrm{O}$を中心とする半径$1$の円$C$に,この円の外にある点$\mathrm{P}$から$2$本の接線をひき,それらのなす角のうち$C$を挟むものの大きさを$\theta$とする.さらに,線分$\mathrm{OP}$の長さを$r$とする.このとき,次の問いに答えよ.

(1)$\displaystyle \cos \frac{\theta}{2}$を$r$を用いて表せ.

(2)$\cos \theta$を$r$を用いて表せ.

(3)$\displaystyle \theta=\frac{\pi}{3}$を満たす点$\mathrm{P}$の軌跡を求めよ.

(4)$\displaystyle \frac{\pi}{3} \leqq \theta \leqq \frac{2\pi}{3}$を満たす点$\mathrm{P}$の存在する領域の面積を求めよ.
(図は省略)
広島修道大学 私立 広島修道大学 2011年 第1問
次の各問に答えよ.

(1)女子$5$人,男子$3$人が横$1$列に並ぶとき,女子が両端にくるような並び方は何通りあるか.また,女子$5$人が続いて並ぶような並び方は何通りあるか.
(2)放物線$y=x^2+ax+b$は$2$点$\mathrm{A}(0,\ -3)$,$\mathrm{B}(2,\ 5)$を通る.このとき,この放物線と$2$点$\mathrm{B}$,$\mathrm{C}(-2,\ -3)$を通る直線で囲まれた図形の面積を求めよ.
(3)$0 \leqq x \leqq \pi$のとき,方程式$8 \cos^4 x-16 \cos^2 x-6 \sin^2 x+9=0$を解け.
広島修道大学 私立 広島修道大学 2011年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)不等式$2x-5 \leqq -x+10$の解は$[$1$]$である.
(2)整式$f(x)$を$x+2$で割ると余りは$-3$,$x-3$で割ると余りは$1$,$x+4$で割ると余りは$2$である.このとき,整式$f(x)$を$(x+2)(x-3)$で割ると余りは$[$2$]$,$(x-3)(x+4)$で割ると余りは$[$3$]$である.
(3)$2$次不等式$\displaystyle x^2+3x-\frac{3}{4} \leqq 1$の解は$[$4$]$であり,連立不等式
\[ \left\{ \begin{array}{l}
x^2+3x-\displaystyle \frac{3}{4} \leqq 1 \\
-x^2+4>0 \phantom{\displaystyle \Biggl( \frac{1}{2} \Biggr)}
\end{array} \right. \]
の解は$[$5$]$である.
(4)放物線$y=-x^2+2x+1$を$C$とし,$C$上の点$\mathrm{P}(2,\ 1)$における接線を$\ell$とすると,直線$\ell$の方程式は$[$6$]$である.また,直線$\ell$と放物線$C$および$y$軸で囲まれた図形の面積は$[$7$]$である.
(5)$16$本のくじの中に,当たりくじが$4$本ある.このくじを$\mathrm{A}$,$\mathrm{B}$の$2$人がこの順に,$1$本ずつ$1$回だけ引き,引いたくじはもとに戻さないものとするとき,$\mathrm{A}$の当たる確率は$[$8$]$となり,$\mathrm{B}$の当たる確率は$[$9$]$となる.
(6)$x$についての不等式$\log_a(3x^2-x-2)>\log_a(x^2+5x-6)$の解は,$a>1$のとき$[$10$]$であり,$0<a<1$のとき$[$11$]$である.
広島修道大学 私立 広島修道大学 2011年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)連立不等式
\[ \left\{ \begin{array}{l}
x-2>0 \\
2x-6 \leqq 0
\end{array} \right. \]
の解は$[$1$]$である.
(2)$x^3-4x^2+5x+2$を$x-4$で割った余りは$[$2$]$である.
(3)$f(x)=x^2+ax+b,\ g(x)=x^2+2ax+b$とする.放物線$y=g(x)$の頂点の座標が$\displaystyle \left( \frac{8}{3},\ \frac{26}{9} \right)$であるとき,$a=[$3$]$,$b=[$4$]$である.また,$2$つの放物線$y=f(x)$,$y=g(x)$および直線$x=\sqrt{3}$で囲まれた図形の面積は$[$5$]$である.
(4)$\triangle \mathrm{ABC}$において$\displaystyle \angle \mathrm{B}=\frac{\pi}{12}$,$\mathrm{BC}=1$,$\mathrm{AB}=2$のとき,$\mathrm{AC}^2=[$6$]$,$\sin^2 A=[$7$]$である.
(5)$2$次方程式$3x^2+2x+15=0$の$2$つの解を$\alpha,\ \beta$とするとき,$\alpha^2+\beta^2=[$8$]$,$\displaystyle \frac{\alpha+i \beta}{\alpha-i \beta}-\frac{\alpha-i \beta}{\alpha+i \beta}=[$9$]$である.
(6)$1$から$15$までの異なる$15$個の自然数の中から,$4$個の異なる数をとって組を作る.このとき,偶数だけからなる組は$[$10$]$通りあり,偶数を少なくとも$1$個含む組は$[$11$]$通りある.
北海道文教大学 私立 北海道文教大学 2011年 第5問
円$\mathrm{O}$に内接する四角形$\mathrm{ABCD}$において,$\mathrm{AB}=\mathrm{BC}=5$,$\mathrm{AD}=8$,$\mathrm{BD}=7$のとき,以下の問いに答えなさい.
(図は省略)

(1)$\angle \mathrm{BAD}$と$\angle \mathrm{BCD}$の大きさを求めなさい.
(2)辺$\mathrm{CD}$の長さを求めなさい.
(3)$\triangle \mathrm{ABC}$の面積と$\triangle \mathrm{ADC}$の面積について,$\displaystyle \frac{\triangle \mathrm{ADC}}{\triangle \mathrm{ABC}}$の値を求めなさい.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。