タグ「面積」の検索結果

202ページ目:全2409問中2011問~2020問を表示)
南山大学 私立 南山大学 2011年 第2問
点$\mathrm{A}(1,\ 0)$を通る傾き$k$の直線を$\ell$とする.$\ell$と放物線$C:y=-x^2-2x+4$の$2$つの交点を$\mathrm{P}(\alpha,\ -\alpha^2-2 \alpha+4)$,$\mathrm{Q}(\beta,\ -\beta^2-2 \beta+4)$とする.ただし,$\alpha<\beta$である.

(1)$\beta-\alpha$を$k$を用いて表せ.
(2)$\beta-\alpha$が最小となるときの$k$の値を求めよ.
(3)$(2)$のとき,$\ell$と$C$で囲まれた図形の面積を求めよ.
(4)$(2)$のとき,$C$上を$\mathrm{P}$から$\mathrm{Q}$まで動く点を$\mathrm{R}$とする.線分$\mathrm{AR}$の中点$\mathrm{M}$の軌跡を求めよ.
南山大学 私立 南山大学 2011年 第1問
$[ ]$の中に答を入れよ.

(1)$8^{n-1}<10^{39}<8^n$を満たす自然数$n$の値は$[ア]$である.ただし,$\log_{10}2=0.3010$とする.
(2)$\triangle \mathrm{ABC}$の$3$辺の長さが$a=9$,$b=8$,$c=7$であるとき,$\sin A=[イ]$であり,この三角形の面積は$[ウ]$である.
(3)$2$次方程式$x^2+kx+3=0$の$1$つの解が$\displaystyle \alpha=\frac{3-\sqrt{3}i}{2}$であるとき,実数$k$の値は$[エ]$である.また,$\alpha^5+\alpha^3+1$の値を求めると$[オ]$である.
(4)定積分$\displaystyle \int_0^2 |x^2-1| \, dx=[カ]$である.また,関数$f(x)$がすべての実数$x$に対して等式$\displaystyle f(x)=|x^2-1|+\int_0^2 f(t) \, dt$を満たすとき,$f(x)=[キ]$である.
(5)$a,\ b$は実数で,$a<0$とする.$a \leqq x \leqq 3$を定義域とする$2$次関数$\displaystyle y=\frac{1}{2}x^2-x+b$の値域が$-5 \leqq y \leqq 3$であるとき,$a=[ク]$,$b=[ケ]$である.
(6)$a$を$0$でない実数とする.関数$f(x)=x^3-3ax^2-9a^2x+3a$の極小値が負になるとき,$a$のとりうる値の範囲は$[コ]$である.
南山大学 私立 南山大学 2011年 第2問
座標平面上に,放物線$C:y=x^2-2x+1$と点$\mathrm{A}(1,\ -1)$がある.$\mathrm{A}$を通る$C$の接線のうち,傾きが負のものを$\ell$とする.

(1)$\ell$の方程式を求めよ.
(2)$\ell$に関して,$C$上の点$\displaystyle \mathrm{P} \left( \frac{5}{4},\ \frac{1}{16} \right)$と線対称な点を$\mathrm{Q}$とする.$\mathrm{Q}$の座標を求め,$C$,$\ell$,$\mathrm{P}$,$\mathrm{Q}$を同一平面上に図示せよ.
(3)$\ell$に関して,$y$軸と線対称な直線を$m$とする.$m$の方程式を求めよ.
(4)$\ell$に関して,$C$と線対称な曲線を$D$とする.$D$と$y$軸とで囲まれた部分の面積を求めよ.
甲南大学 私立 甲南大学 2011年 第2問
四角形$\mathrm{ABCD}$は円$\mathrm{O}$に内接し$\mathrm{AB}=\mathrm{BC}=\sqrt{2}$,$\mathrm{CD}=2$,$\mathrm{DA}=1+\sqrt{3}$とする.このとき,以下の問いに答えよ.

(1)$\angle \mathrm{ABC}$の大きさと線分$\mathrm{AC}$の長さを求めよ.
(2)四角形$\mathrm{ABCD}$の面積を求めよ.
(3)円$\mathrm{O}$の半径を求めよ.
甲南大学 私立 甲南大学 2011年 第2問
四角形$\mathrm{ABCD}$は円$\mathrm{O}$に内接し$\mathrm{AB}=\mathrm{BC}=\sqrt{2}$,$\mathrm{CD}=2$,$\mathrm{DA}=1+\sqrt{3}$とする.このとき,以下の問いに答えよ.

(1)$\angle \mathrm{ABC}$の大きさと線分$\mathrm{AC}$の長さを求めよ.
(2)四角形$\mathrm{ABCD}$の面積を求めよ.
(3)円$\mathrm{O}$の半径を求めよ.
甲南大学 私立 甲南大学 2011年 第3問
$a$は実数とする.多項式$f(x),\ g(x)$が
\[ f(x)=ax^2+x+\int_0^1 g(t) \, dt,\quad g(x)=-x^2+2x+\int_{-1}^1 f(t) \, dt \]
を満たすとき,以下の問いに答えよ.

(1)$\displaystyle \int_0^1 g(t) \, dt,\ \int_{-1}^1 f(t) \, dt$の値を$a$を用いて表せ.
(2)方程式$f(x)=g(x)$が実数解をもつときの$a$の値の範囲を求めよ.
(3)$\displaystyle g \left( \frac{2}{3} \right)=0$のとき,$2$つの関数$y=f(x)$,$y=g(x)$のグラフで囲まれる部分の面積を求めよ.
南山大学 私立 南山大学 2011年 第2問
曲線$\displaystyle C:y=\frac{e^{a(x+2)}}{a} (a>0)$と原点$\mathrm{O}$から$C$に引いた接線$\ell$を考える.

(1)$\ell$の方程式を求めよ.
(2)$C$と$\ell$と$y$軸とで囲まれた部分の面積$S$を$a$を用いて表せ.
(3)(2)の$S$について,$S$を最小にする$a$の値と$S$の最小値を求めよ.
名城大学 私立 名城大学 2011年 第3問
平面上に$\triangle \mathrm{ABC}$と$2$点$\mathrm{P}$,$\mathrm{Q}$があり,
\[ 2 \overrightarrow{\mathrm{AP}}+3 \overrightarrow{\mathrm{BP}}+\overrightarrow{\mathrm{CP}}=\overrightarrow{\mathrm{0}},\quad 2 \overrightarrow{\mathrm{AQ}}+\overrightarrow{\mathrm{BQ}}+k \overrightarrow{\mathrm{CQ}}=\overrightarrow{\mathrm{0}} \quad (k \text{は実数}) \]
を満たし,$\overrightarrow{\mathrm{PQ}} \para \overrightarrow{\mathrm{BC}}$であるとする.

(1)$\overrightarrow{p}=\overrightarrow{\mathrm{AP}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{AB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{AC}}$とおくとき,$\overrightarrow{p}$を$\overrightarrow{b}$と$\overrightarrow{c}$を用いて表せ.
(2)$k$の値を求めよ.
(3)$\triangle \mathrm{ABC}$の面積が$1$のとき,$\triangle \mathrm{AQC}$の面積を求めよ.
名城大学 私立 名城大学 2011年 第2問
放物線$C_1$を$y=(x+1)^2+1$とする.$C_1$を$y$軸に関して対称移動した放物線を$C_2$とし,$C_1$を$x$軸に関して対称移動した放物線を$C_3$とする.次の各問に答えよ.

(1)$C_2$の方程式と$C_1$,$C_2$の交点$\mathrm{P}$の座標を求めよ.
(2)$C_3$を平行移動して得られる曲線で,頂点が$\mathrm{P}$となる放物線を$C_4$とする.$C_4$の方程式を求めよ.
(3)$3$つの放物線$C_1$,$C_2$,$C_4$によって囲まれる部分の面積を求めよ.
名城大学 私立 名城大学 2011年 第3問
$k$を正の定数とする.$3$つの直線
\[ \ell_1:y=kx,\quad \ell_2:y=-k^2x,\quad \ell_3:y=(k+1)x-3 \]
によって囲まれる三角形を考える.次の各問に答えよ.

(1)三角形の$3$つの頂点の座標を求めよ.
(2)三角形の面積を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。