タグ「面積」の検索結果

201ページ目:全2409問中2001問~2010問を表示)
北海学園大学 私立 北海学園大学 2011年 第3問
$f(x)=2x^3+12x^2+18x+9$とおくとき,関数$y=f(x)$のグラフは点$\mathrm{A}$に関して点対称である.点$\mathrm{A}$を通る傾き$m$の直線を$\ell$とする.このとき,次の問いに答えよ.

(1)点$\mathrm{A}$の座標を求めよ.
(2)直線$\ell$が関数$y=f(x)$のグラフと$3$点で交わる条件を求めよ.
(3)関数$y=f(x)$のグラフと直線$\ell$で囲まれた$2$つの部分の面積の和が$1$となるような$m$の値を求めよ.
北海学園大学 私立 北海学園大学 2011年 第5問
半径$1$の円に内接する三角形$\mathrm{ABC}$において,$\angle \mathrm{A}=\alpha$,$\angle \mathrm{B}=\beta$とし,$\displaystyle \sin \alpha=\frac{3}{5}$,$\displaystyle \sin \beta=\frac{1}{2}$とする.$\gamma$が$\gamma>0^\circ$かつ$\alpha+\beta+\gamma=90^\circ$を満たすとき,次の問いに答えよ.

(1)$\mathrm{BC}$と$\mathrm{CA}$の長さをそれぞれ求めよ.
(2)$\sin \gamma$と$\cos \gamma$の値をそれぞれ求めよ.
(3)三角形$\mathrm{ABC}$の面積$S$を求めよ.
北海学園大学 私立 北海学園大学 2011年 第3問
傾き$m$の直線$\ell_1$が放物線$y=x^2$に点$\mathrm{A}$で接している.また,直線$\ell_2$は点$\mathrm{B}$で$y=x^2$に接し,$\ell_1$に直交している.ただし,$m$は正の実数である.

(1)点$\mathrm{B}$の座標を$m$を用いて表せ.また,$\ell_2$の方程式を$m$を用いて表せ.
(2)$\ell_1$と$\ell_2$の交点はある直線上の点である.その直線の方程式を求めよ.
(3)$2$点$\mathrm{A}$,$\mathrm{B}$を結ぶ直線と$y=x^2$で囲まれた部分の面積を求めよ.
北海学園大学 私立 北海学園大学 2011年 第4問
三角形$\mathrm{OAB}$において辺$\mathrm{AB}$を$2:1$に外分する点を$\mathrm{C}$,辺$\mathrm{OB}$を$k:1$に内分する点を$\mathrm{D}$,線分$\mathrm{AD}$の延長が線分$\mathrm{OC}$と交わる点を$\mathrm{E}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,次の問いに答えよ.ただし,$k$は正の実数とする.

(1)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表せ.
(2)$\mathrm{OE}:\mathrm{EC}$を$k$を用いて表せ.
(3)三角形$\mathrm{BCE}$の面積を$S$,三角形$\mathrm{ABD}$の面積を$T$とするとき,すべての$k$に対して,$\displaystyle \frac{S}{T}<2$であることを示せ.
自治医科大学 私立 自治医科大学 2011年 第24問
放物線$C:f(x)=-x^2+x$について考える.$C$上の$2$点を$\mathrm{O}(0,\ 0)$,$\mathrm{A}(a,\ f(a))$($a>0$,$a$は実数)とする.$C$上の点$\mathrm{P}(t,\ f(t))$が曲線$\mathrm{OA}$上を動くとき,三角形$\mathrm{OPA}$の面積の最大値は,$\displaystyle \frac{a^3}{M}$となる.$M$の値を求めよ.(ただし,$0<t<a$,$t$は実数)
自治医科大学 私立 自治医科大学 2011年 第25問
放物線$y=-x^2+2x-1$と直線$y=-x-1$とで囲まれる領域の面積を$S$とする.$2S$の値を求めよ.
明治大学 私立 明治大学 2011年 第2問
曲線$C:y=x^2$上に,$3$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2)$,$\mathrm{B}^\prime (-b,\ b^2)$が与えられている.ただし,$-b<a<0<b$とする.

(1)$\mathrm{A}$,$\mathrm{B}$を結ぶ直線$\ell$の方程式は,$[ ]$である.
(2)点$\mathrm{P}(p,\ p^2)$を通り,$y$軸に平行な直線が$\ell$と交わる点を$\mathrm{Q}$とする.ただし,$a<p<b$とする.$\mathrm{PQ}$の長さは,$[ ]$である.
(3)$\mathrm{A}$,$\mathrm{B}$を固定して,$\mathrm{P}$が$C$上で$\mathrm{A}$,$\mathrm{B}$の間を動くとき,$\triangle \mathrm{ABP}$の面積の最大値は,$[ ]$である.
(4)$\mathrm{B}$,$\mathrm{B}^\prime$を固定して,$\mathrm{A}$,$\mathrm{P}$が$C$上で$\mathrm{B}$,$\mathrm{B}^\prime$の間を動くとき,四角形$\mathrm{BB}^\prime \mathrm{AP}$の面積の最大値を求めよ.またこのときの$\mathrm{A}$,$\mathrm{P}$の位置を求めよ.
明治大学 私立 明治大学 2011年 第2問
次の空欄$[ア]$から$[キ]$に当てはまるものを入れよ.

行列$M$を$M=\left( \begin{array}{rr}
-1 & -1 \\
1 & -1
\end{array} \right)$で定める.このとき
\[ M=\sqrt{2} \left( \begin{array}{cc}
\cos \frac{[ア]}{[イ]} \pi & -\sin \frac{[ア]}{[イ]} \pi \\ \\
\sin \frac{[ア]}{[イ]} \pi & \cos \frac{[ア]}{[イ]} \pi
\end{array} \right) \]
である.
次に$\left( \begin{array}{c}
a_n \\
b_n
\end{array} \right)=M^n \left( \begin{array}{c}
1 \\
0
\end{array} \right) (n=1,\ 2,\ 3,\ \cdots)$とおき,点$(a_n,\ b_n)$を$\mathrm{P}_n$で表す.このとき点$\mathrm{P}_n$と原点$\mathrm{O}$との距離は$[ウ]^{\frac{n}{2}}$である.またベクトル$\overrightarrow{\mathrm{OP}_n}$と$\overrightarrow{\mathrm{OP}_{n+2}}$のなす角は$\displaystyle \theta=\frac{[エ]}{[オ]}\pi$である.ただし,$0 \leqq \theta \leqq \pi$とする.
$3$点$\mathrm{P}_n$,$\mathrm{P}_{n+1}$,$\mathrm{P}_{n+2}$を頂点とする三角形の面積は$[カ] \times [キ]^{n-1}$である.
ただし
\[ \left( \begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array} \right) \left( \begin{array}{cc}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta
\end{array} \right)=\left( \begin{array}{cc}
\cos (\alpha+\beta) & -\sin (\alpha+\beta) \\
\sin (\alpha+\beta) & \cos (\alpha+\beta)
\end{array} \right) \]
となることは使ってよい.
南山大学 私立 南山大学 2011年 第1問
$[ ]$の中に答を入れよ.

(1)放物線$y=x^2+2x$を$x$軸方向に$p$,$y$軸方向に$\displaystyle \frac{1}{2}p^2$だけ平行移動して得られる放物線$C$の方程式を求めると$y=[ア]$である.$C$と直線$y=x$が異なる$2$つの点で交わるような$p$の値の範囲を求めると$[イ]$である.
(2)$3$次の整式$F(x)$を考える.$F(x)$の$x^3$の項の係数は$1$であり,$xF(x)$を$x^2-3x+2$で割った余りは$2x$である.このとき,$F(2)$の値は$F(2)=[ウ]$であり,さらに,$F(-1)=2$であるとき,$F(-2)$の値は$F(-2)=[エ]$である.
(3)$\triangle \mathrm{ABC}$において$3$辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の長さがそれぞれ$2,\ 3,\ x$であるとする.このとき,$\triangle \mathrm{ABC}$の面積が最大になるような$x$の値を求めると$x=[オ]$である.また,$\angle \mathrm{ACB}$が最大になるような$x$の値を求めると$x=[カ]$である.
(4)$0<\alpha<\beta<\pi$のとき,座標平面上で,$2$点$\mathrm{A}(2 \cos \alpha,\ 2 \sin \alpha)$,$\mathrm{B}(2 \cos \alpha+\cos \beta,\ 2 \sin \alpha+\sin \beta)$と原点$\mathrm{O}$を頂点とする$\triangle \mathrm{OAB}$を考える.$\mathrm{B}$の座標が$(1,\ 1)$のとき,$\cos \angle \mathrm{AOB}$の値は$\cos \angle \mathrm{AOB}=[キ]$であり,$\cos \alpha$の値は$\cos \alpha=[ク]$である.
南山大学 私立 南山大学 2011年 第2問
座標平面上に放物線$C:y=x^2$と$4$点$\mathrm{P}(p,\ p^2)$,$\mathrm{Q}(-p,\ p^2)$,$\mathrm{R}(-p,\ p^2+2p)$,$\mathrm{S}(p,\ p^2+2p)$がある.また,$3$次関数$y=f(x)$は$x=-p$で極小値$p^2$,$x=p$で極大値$p^2+2p$をとる.ただし,$p>0$とする.

(1)$C$と線分$\mathrm{PQ}$で囲まれた部分の面積と正方形$\mathrm{PQRS}$の面積が等しくなる$p$の値を求めよ.
(2)$f(x)$を$p$で表せ.
(3)$\mathrm{P}$における$C$の接線を$\ell$とする.曲線$y=f(x)$上の点$(a,\ f(a))$における接線が$\ell$と垂直になるとき,$a$を$p$で表せ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。