タグ「面積」の検索結果

184ページ目:全2409問中1831問~1840問を表示)
京都大学 国立 京都大学 2011年 第3問
$xy$平面上で,$y=x$のグラフと$\displaystyle y=|\displaystyle\frac{3|{4}x^2-3}-2$のグラフによって囲まれる図形の面積を求めよ.
一橋大学 国立 一橋大学 2011年 第3問
$xy$平面上に放物線$C:y=-3x^2+3$と2点A$(1,\ 0)$,P$(0,\ 3p)$がある.線分APと$C$は,Aとは異なる点Qを共有している.

(1)定数$p$の存在する範囲を求めよ.
(2)$S_1$を,$C$と線分AQで囲まれた領域とし,$S_2$を,$C$,線分QP,および$y$軸とで囲まれた領域とする.$S_1$と$S_2$の面積の和が最小となる$p$の値を求めよ.
京都大学 国立 京都大学 2011年 第4問
$xy$平面上で,連立不等式
\[\left\{
\begin{array}{l}
|x| \leqq 2 \\
y \geqq x \\
y \leqq |\ \displaystyle\frac{3}{4}x^2-3\ |-2
\end{array}
\right.
\]
を満たす領域の面積を求めよ.
東京大学 国立 東京大学 2011年 第1問
座標平面において,点P$(0,\ 1)$を中心とする半径1の円を$C$とする.$a$を$0<a<1$を満たす実数とし,直線$y=a(x+1)$と$C$との交点をQ,Rとする.

(1)$\triangle$PQRの面積$S(a)$を求めよ.
(2)$a$が$0<a<1$の範囲を動くとき,$S(a)$が最大となる$a$を求めよ.
一橋大学 国立 一橋大学 2011年 第4問
$a,\ b,\ c$を正の定数とする.空間内に3点A$(a,\ 0,\ 0)$,B$(0,\ b,\ 0)$,C$(0,\ 0,\ c)$がある.

(1)辺ABを底辺とするとき,$\triangle$ABCの高さを$a,\ b,\ c$で表せ.
(2)$\triangle$ABC,$\triangle$OAB,$\triangle$OBC,$\triangle$OCAの面積をそれぞれ$S,\ S_1,\ S_2,\ S_3$とする.ただし,Oは原点である.このとき,不等式
\[ \sqrt{3}S \geqq S_1 +S_2+S_3 \]
が成り立つことを示せ.
(3)(2)の不等式において等号が成り立つための条件を求めよ.
大阪大学 国立 大阪大学 2011年 第2問
実数の組$(p,\ q)$に対し,$f(x) = (x-p)^2+q$とおく.

(1)放物線$y=f(x)$が点$(0,\ 1)$を通り,しかも直線$y=x$の$x>0$の部分と接するような実数の組$(p,\ q)$と接点の座標を求めよ.
(2)実数の組$(p_1,\ q_1),\ (p_2,\ q_2)$に対して,$f_1(x)=(x-p_1)^2+q_1$および$f_2(x)=(x-p_2)^2+q_2$とおく.実数$\alpha,\ \beta \quad (\text{ただし}\alpha < \beta)$に対して
\[ f_1(\alpha)<f_2(\alpha) \quad \text{かつ} f_1(\beta) < f_2(\beta) \]
であるならば,区間$\alpha \leqq x \leqq \beta$において不等式$f_1(x) < f_2(x)$がつねに成り立つことを示せ.
(3)長方形$R: 0 \leqq x \leqq 1,\ 0 \leqq y \leqq 2$を考える.また,4点P$_0(0,\ 1)$,P$_1(0,\ 0)$,P$_2(1,\ 1)$,P$_3(1,\ 0)$をこの順に線分で結んで得られる折れ線を$L$とする.実数の組$(p,\ q)$を,放物線$y=f(x)$と折れ線$L$に共有点がないようなすべての組にわたって動かすとき,$R$の点のうちで放物線$y=f(x)$が通過する点全体の集合を$T$とする.$R$から$T$を除いた領域$S$を座標平面上に図示し,その面積を求めよ.
九州大学 国立 九州大学 2011年 第1問
曲線$y=\sqrt{x}$上の点$\mathrm{P}(t,\ \sqrt{t})$から直線$y=x$へ垂線を引き,交点を$\mathrm{H}$とする.ただし,$t>1$とする.このとき,以下の問いに答えよ.

(1)$\mathrm{H}$の座標を$t$を用いて表せ.
(2)$x \geqq 1$の範囲において,曲線$y=\sqrt{x}$と直線$y=x$および線分$\mathrm{PH}$とで囲まれた図形の面積を$S_1$とするとき,$S_1$を$t$を用いて表せ.
(3)曲線$y=\sqrt{x}$と直線$y=x$で囲まれた図形の面積を$S_2$とすると,$S_1=S_2$であるとき,$t$の値を求めよ.
千葉大学 国立 千葉大学 2011年 第2問
三角形$\mathrm{ABC}$の面積は$\displaystyle \frac{3+\sqrt{3}}{4}$,外接円の半径は$1$,$\angle \mathrm{BAC} = 60^\circ,\ \mathrm{AB} > \mathrm{AC}$である.このとき,三角形$\mathrm{ABC}$の各辺の長さを求めよ.
横浜国立大学 国立 横浜国立大学 2011年 第2問
$xy$平面上の曲線$y=x^2$を$C$とする.点P$_0(2,\ 4)$における$C$の接線が直線$y=2$と交わる点をQ$_1(a_1,\ 2)$とする.次に,点P$_1(a_1,\ {a_1}^2)$における$C$の接線が直線$y=a_1$と交わる点をQ$_2(a_2,\ a_1)$とする.以下同様に,点$(a_n,\ {a_n}^2)$をP$_n$とし,P$_n$における$C$の接線が$y=a_n$と交わる点をQ$_{n+1}(a_{n+1},\ a_n)$として,P$_2,\ \text{Q}_3,\ \text{P}_3,\ \text{Q}_4,\ \cdots$を定める.次の問いに答えよ.

(1)$a_1$を求めよ.
(2)$a_n$を$n$の式で表せ.
(3)線分P$_n$Q$_{n+1}$,線分P$_{n+1}$Q$_{n+1}$,および$C$で囲まれる部分の面積を$n$の式で表せ.
埼玉大学 国立 埼玉大学 2011年 第1問
$2$つの放物線$y=x^2$および$y^2=8x$を考える.次の問いに答えよ.

(1)$2$つの放物線の共有点を求めよ.
(2)$2$つの放物線によって囲まれた部分を$S$とする.$S$の面積を求めよ.
(3)$S$を$x$軸のまわりに$1$回転してできる立体の体積を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。