タグ「面積」の検索結果

179ページ目:全2409問中1781問~1790問を表示)
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
以下の問の$[$64$]$~$[$73$]$に当てはまる適切な数値またはマイナス符号($-$)をマークしなさい.

$xy$平面上に原点$\mathrm{O}(0,\ 0)$を中心とする円$C$と,$2$つの直線$\ell_1$,$\ell_2$がある.ただし,$a>1$とする.


円$C$ \quad\!\! :$x^2+y^2=1$
直線$\ell_1$:$\displaystyle x+\sqrt{2}y=\frac{\sqrt{3}}{a}$
直線$\ell_2$:$\displaystyle x+\sqrt{2}y=a \sqrt{3}$


円$C$と直線$\ell_1$は異なる$2$点$\mathrm{A}$,$\mathrm{B}$で交わり,それぞれの$x$座標を$x_\mathrm{A}$,$x_\mathrm{B}$とおくと,$x_\mathrm{A}<x_\mathrm{B}$である.また,直線$\ell_2$上に,$x$座標および$y$座標が共に正であるような点$\mathrm{P}$をとる.三角形$\mathrm{APB}$において,$\angle \mathrm{APB}=\theta$とすると,$\displaystyle \cos \theta=\frac{1}{a} \sqrt{a^2-1}$であり,四角形$\mathrm{OAPB}$の面積は$2 \sqrt{6}$である.

(1)線分$\mathrm{AB}$の長さは$\displaystyle \frac{[$64$] \sqrt{[$65$]}}{[$66$]}$である.

(2)$\angle \mathrm{OBP}=\frac{[$67$]}{[$68$]} \pi+\frac{[$69$]}{[$70$]} \theta$である.

(3)三角形$\mathrm{OBP}$の面積は$\displaystyle \frac{[$71$] \sqrt{[$72$]}}{[$73$]}$である.
成城大学 私立 成城大学 2012年 第3問
白い正三角形$\mathrm{ABC}$がある.$1$回目の操作としてこの正三角形の各辺の中点を互いに結んでできる$4$つの正三角形のうち,中央の正三角形を赤く塗る.次に,$2$回目の操作として残りすべての白い三角形それぞれについて,各辺の中点を互いに結んでできる$4$つの正三角形のうち,中央の正三角形を赤く塗る.以下同様に$n$回目までこの操作を繰り返す.

正三角形$\mathrm{ABC}$からこの操作を$n$回繰り返したとき,以下の問いに答えよ.

(1)赤い正三角形の数を求めよ.
(2)白い正三角形の数を求めよ.
(3)正三角形$\mathrm{ABC}$の一辺の長さを$1$としたとき,赤い正三角形の面積の和を求めよ.
安田女子大学 私立 安田女子大学 2012年 第1問
次の問いに答えよ.

(1)$\sqrt{5}$の小数部分を$a$とするとき,$\displaystyle a+\frac{1}{a}$の値を求めよ.
(2)$4<\sqrt{2x^2}<7$を満たす整数$x$をすべて求めよ.
(3)正三角形$\mathrm{ABC}$において$\angle \mathrm{ABC}=\theta$とするとき,$\sin \theta+\cos \theta+\tan \theta$の値を求めよ.
(4)対角線の差が$4 \, \mathrm{cm}$で,面積が$96 \, \mathrm{cm}^2$のひし形がある.このひし形の$1$辺の長さを求めよ.
(5)$5^{4 \log_5 2}$の値を求めよ.
安田女子大学 私立 安田女子大学 2012年 第1問
次の問いに答えよ.

(1)$\sqrt{5}$の小数部分を$a$とするとき,$\displaystyle a+\frac{1}{a}$の値を求めよ.
(2)$4<\sqrt{2x^2}<7$を満たす整数$x$をすべて求めよ.
(3)正三角形$\mathrm{ABC}$において$\angle \mathrm{ABC}=\theta$とするとき,$\sin \theta+\cos \theta+\tan \theta$の値を求めよ.
(4)対角線の差が$4 \, \mathrm{cm}$で,面積が$96 \, \mathrm{cm}^2$のひし形がある.このひし形の$1$辺の長さを求めよ.
安田女子大学 私立 安田女子大学 2012年 第3問
直角三角形$\mathrm{ABC}$において,$\mathrm{AB}=\sqrt{3}$,$\mathrm{BC}=1$,$\mathrm{CA}=2$である.図のように,$\triangle \mathrm{ABC}$の外接円上の点$\mathrm{B}$における接線上に$\mathrm{BD}=2 \sqrt{3}$となるように点$\mathrm{D}$をとる.このとき,次の問いに答えよ.
(図は省略)

(1)$\cos \angle \mathrm{CBD}$を求めよ.
(2)線分$\mathrm{CD}$の長さを求めよ.
(3)線分$\mathrm{CD}$の$\mathrm{C}$を越える延長と$\triangle \mathrm{ABC}$の外接円との交点のうち,点$\mathrm{C}$と異なる点を$\mathrm{E}$とするとき,$\triangle \mathrm{BDE}$の面積を求めよ.
安田女子大学 私立 安田女子大学 2012年 第3問
半径$1$の円$C$上にある点$\mathrm{P}$を通る直線$\ell$が,円$C$と点$\mathrm{P}$以外で交わる点を$\mathrm{Q}$とする.また,点$\mathrm{P}$で円$C$と接する直線を$m$とし,点$\mathrm{Q}$を通り直線$m$と垂直に交わる直線を$n$とする.さらに,直線$m$と直線$n$との交点を$\mathrm{R}$,円$C$と直線$n$とが点$\mathrm{Q}$以外で交わる点を$\mathrm{S}$とする.$\mathrm{PR}:\mathrm{RQ}=1:2$,$\displaystyle \mathrm{PQ}=\frac{4 \sqrt{5}}{5}$のとき,次の問いに答えよ.

(1)線分$\mathrm{RQ}$の長さを求めよ.
(2)$\triangle \mathrm{PSQ}$の面積を求めよ.
(3)直線$\ell$上に点$\mathrm{T}$をとる.そして,この点$\mathrm{T}$は,円$C$の外部に位置しているものとし,線分$\mathrm{TQ}$の長さは$\displaystyle \frac{\sqrt{5}}{4}$とする.また,点$\mathrm{T}$から円$C$に接線を引き,その接点を$\mathrm{U}$とする.このとき,線分$\mathrm{TU}$の長さを求めよ.
安田女子大学 私立 安田女子大学 2012年 第3問
$1$辺の長さが$1$の正方形の紙を用意し,頂点を$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とする.次の図のように,正方形の各辺を底辺とする高さ$x$の$4$つの二等辺三角形$\triangle \mathrm{ABE}$,$\triangle \mathrm{BCF}$,$\triangle \mathrm{CDG}$,$\triangle \mathrm{DAH}$を正方形から切り取り,残りを図の$4$本の線分$\mathrm{EF}$,$\mathrm{FG}$,$\mathrm{GH}$,$\mathrm{HE}$にそって折り曲げて,点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$が$1$点になるように辺を合わせて四角錐を作るとする.ただし,$\displaystyle 0<x<\frac{1}{2}$とする.このとき,次の問いに答えよ.
(図は省略)

(1)この四角錐の底面となる正方形$\mathrm{EFGH}$の面積を求めよ.
(2)この四角錐の表面積となる図の斜線部分の面積を求めよ.
(3)$(2)$で求めた四角錐の表面積が$\displaystyle \frac{1}{2}$のとき,この四角錐の体積を求めよ.
東京女子大学 私立 東京女子大学 2012年 第1問
$\mathrm{AC}=\mathrm{BC}$をみたす二等辺三角形$\mathrm{ABC}$を考える.$\triangle \mathrm{ABC}$の外接円において,点$\mathrm{D}$は点$\mathrm{B}$を含まない弧$\mathrm{AC}$上にあり,$\mathrm{AD}=\mathrm{CD}$である.$\mathrm{AB}=2$,$\mathrm{BC}=3$のとき,以下の設問に答えよ.

(1)$\angle \mathrm{ABC}=\theta$とおくとき,$\sin \theta$を求めよ.
(2)$\mathrm{AD}$の長さを求めよ.
(3)四角形$\mathrm{ABCD}$の面積を求めよ.
東京女子大学 私立 東京女子大学 2012年 第8問
座標空間において,点$\mathrm{A}(2,\ 0,\ 0)$,$\mathrm{B}(0,\ 1,\ 0)$,$\mathrm{C}(0,\ 0,\ 2)$を$3$つの頂点とする$\triangle \mathrm{ABC}$を考える.このとき,以下の設問に答えよ.

(1)$\triangle \mathrm{ABC}$の面積を求めよ.
(2)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を含む平面上の点と原点$\mathrm{O}$との距離の最小値を求めよ.
愛知学院大学 私立 愛知学院大学 2012年 第2問
図のように,円$x^2+y^2=m^2$(ただし,$m \geqq 1$)と,直線$y=x$および直線$y=-x+1$の交点をそれぞれ,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とする.次の値を$m$を用いて求めなさい.

(1)$\cos \angle \mathrm{AOB}$
(2)$\mathrm{BD}$の長さ
(3)四角形$\mathrm{ABCD}$の面積$S$
(図は省略)
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。