タグ「面積」の検索結果

176ページ目:全2409問中1751問~1760問を表示)
大阪工業大学 私立 大阪工業大学 2012年 第2問
座標空間内の$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(2 \sqrt{2},\ -2 \sqrt{3},\ 2)$,$\mathrm{B}(\sqrt{6}-\sqrt{2},\ 3+\sqrt{3},\ \sqrt{3}-1)$について,次の問いに答えよ.

(1)$|\overrightarrow{\mathrm{OA}}|$,$|\overrightarrow{\mathrm{OB}}|$,$|\overrightarrow{\mathrm{AB}}|$および$\angle \mathrm{AOB}$を求めよ.ただし,$0 \leqq \angle \mathrm{AOB} \leqq \pi$とする.
(2)点$\mathrm{O}$を中心とし,$2$点$\mathrm{A}$,$\mathrm{B}$を通る円の周上から$\mathrm{A}$,$\mathrm{B}$を含む$6$点をとって正六角形を作る.このとき,$\mathrm{A}$,$\mathrm{B}$以外の$4$頂点の座標を求めよ.
(3)この正六角形の面積$S$を求めよ.
大阪工業大学 私立 大阪工業大学 2012年 第2問
座標空間内の$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(2 \sqrt{2},\ -2 \sqrt{3},\ 2)$,$\mathrm{B}(\sqrt{6}-\sqrt{2},\ 3+\sqrt{3},\ \sqrt{3}-1)$について,次の問いに答えよ.

(1)$|\overrightarrow{\mathrm{OA}}|$,$|\overrightarrow{\mathrm{OB}}|$,$|\overrightarrow{\mathrm{AB}}|$および$\angle \mathrm{AOB}$を求めよ.ただし,$0 \leqq \angle \mathrm{AOB} \leqq \pi$とする.
(2)点$\mathrm{O}$を中心とし,$2$点$\mathrm{A}$,$\mathrm{B}$を通る円の周上から$\mathrm{A}$,$\mathrm{B}$を含む$6$点をとって正六角形を作る.このとき,$\mathrm{A}$,$\mathrm{B}$以外の$4$頂点の座標を求めよ.
(3)この正六角形の面積$S$を求めよ.
獨協大学 私立 獨協大学 2012年 第3問
放物線$y=-x^2+1$上の点$(\alpha,\ -\alpha^2+1)$における接線を$\ell_1$とし,点$(\beta,\ -\beta^2+1)$における接線を$\ell_2$とする.ただし,$\alpha<0<\beta$で$\beta-\alpha=c$(一定)とする.

(1)接線$\ell_1$と$y$軸および放物線で囲まれる部分の面積$S_1$を$\alpha$で表せ.
(2)接線$\ell_2$と$y$軸および放物線で囲まれる部分の面積$S_2$を$\beta$で表せ.
(3)面積の和$S_1+S_2$が最小となるときの$\alpha,\ \beta$とそのときの最小値を$c$で表せ.
大阪薬科大学 私立 大阪薬科大学 2012年 第3問
次の問いに答えなさい.

原点を$\mathrm{O}$とする$xy$座標平面に,点$\mathrm{A}(3,\ 4)$がある.$\mathrm{O}$を中心に反時計回りに$\displaystyle \frac{1}{4}\pi$だけ回転することで,$\mathrm{A}$は点$\mathrm{B}$に移る.

(1)$\overrightarrow{\mathrm{OA}}$と$x$軸の正の向きがなす角を$\alpha$とすると,$\tan \alpha=[$\mathrm{J]$}$である.
(2)$\overrightarrow{\mathrm{OB}}$の成分は$[$\mathrm{K]$}$である.
(3)$\overrightarrow{\mathrm{OC}}=-2 \sqrt{2} \, \overrightarrow{\mathrm{OB}}$となる点$\mathrm{C}$を定め,$\mathrm{OA}$と$\mathrm{OC}$を$2$辺とする平行四辺形$\mathrm{OAPC}$を考える.また,$\mathrm{O}$と$\mathrm{P}$を通る直線を$\ell$とする.

(i) $\ell$の方程式は,$y=[$\mathrm{L]$}$である.
(ii) $3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{C}$を通る放物線と$\ell$で囲まれる部分の面積は,$[$\mathrm{M]$}$である.
(iii) $\mathrm{AP}$を$(1-t):t$に内分する点を$\mathrm{D}$,$\mathrm{CD}$と$\ell$の交点を$\mathrm{E}$とするとき,$\mathrm{DE}:\mathrm{EC}$を$[う]$で求めなさい.
獨協大学 私立 獨協大学 2012年 第1問
次の設問の空欄を,あてはまる数値や記号,式などで埋めなさい.

(1)${(2x+3y)}^3+{(2x-3y)}^3$を展開すると$[$1$]$になる.
(2)$-1<a<0<b<c$とするとき,
\[ -\frac{a}{c},\ \frac{a}{c},\ \frac{1}{ac},\ -\frac{1}{ab},\ -\frac{1}{ac} \]
の$5$つの数のうち,小さい方から$2$番目の数は$[$2$]$であり$4$番目の数は$[$3$]$である.
(3)$\displaystyle \frac{\pi}{2} \leqq \theta<\frac{3\pi}{2}$のときに
\[ 2 \sin^3 \theta-\sin \theta=0 \]
の解をすべて記すと$[$4$]$である.
(4)$a,\ b$を定数とする$x$に関する$3$次方程式
\[ 2x^3+ax^2+bx-10=0 \]
の$2$つの解が$x=1,\ 2$であるとき,$a=[$5$]$,$b=[$6$]$であり,もう$1$つの解は$[$7$]$である.
(5)$\mathrm{P}$,$\mathrm{E}$,$\mathrm{N}$,$\mathrm{C}$,$\mathrm{I}$,$\mathrm{L}$の文字が$1$つずつ刻まれているタイルが$6$枚ある.これらを横$1$列に並べるとき,$\mathrm{P}$が$\mathrm{E}$より左で,かつ,$\mathrm{N}$が$\mathrm{E}$より右となる確率は$[$8$]$である.
(6)$a$を定数とする方程式$x^3-6x^2-a=0$の異なる実数解は,$a$の値が$[$9$]$の場合には$3$個,$[$10$]$または$[$11$]$の場合には$2$個,$[$12$]$または$[$13$]$の場合には$1$個,それぞれ存在する.
(7)$\alpha$を実数として,空間における原点$\mathrm{O}$と$2$点$\mathrm{A}(-1,\ \alpha,\ \alpha)$,$\mathrm{B}(1,\ 2,\ \alpha)$を考える.$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$の内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$を最小にする$\alpha$の値は$[$14$]$であり,このとき,三角形$\mathrm{OAB}$の面積は$[$15$]$である.
(8)点$\mathrm{O}$を中心とする半径$1$の円の円周上に点$\mathrm{A}$をとり,点$\mathrm{A}$における接線上に$\mathrm{AB}=2$となる点$\mathrm{B}$をとる.次に,点$\mathrm{B}$から$\mathrm{BC}=2$となるように円周上に点$\mathrm{A}$とは異なる点$\mathrm{C}$をとる.このとき,三角形$\mathrm{OAC}$の面積は$[$16$]$であり,$\sin \angle \mathrm{CAB}=[$17$]$である.
(図は省略)
法政大学 私立 法政大学 2012年 第3問
関数$f(x)=x^3+2x^2+x-3$について,つぎの問いに答えよ.

(1)$f(x)$の極値を求めよ.
(2)$a$を実数とする.曲線$y=f(x)$上の異なる$2$点$(a,\ f(a))$,$(-a,\ f(-a))$における接線をそれぞれ$\ell_1$,$\ell_2$とするとき,$\ell_1$と$\ell_2$の交点の軌跡を表す曲線$y=g(x)$を求めよ.
(3)曲線$y=g(x)$と$x$軸および直線$x=2$で囲まれた図形の面積を求めよ.
近畿大学 私立 近畿大学 2012年 第2問
$\angle \mathrm{A}={30}^\circ$,$\mathrm{AB}=\mathrm{AC}=4$をみたす$\triangle \mathrm{ABC}$において,点$\mathrm{C}$を点$\mathrm{P}_1$として,$\triangle \mathrm{P}_1 \mathrm{Q}_1 \mathrm{P}_2$が正三角形になるように,辺$\mathrm{AB}$上に点$\mathrm{Q}_1$,辺$\mathrm{AC}$上に点$\mathrm{P}_2$をとる.次に,図のように,$\triangle \mathrm{P}_2 \mathrm{Q}_2 \mathrm{P}_3$が正三角形になるように,辺$\mathrm{AB}$上に点$\mathrm{Q}_2$,辺$\mathrm{AC}$上に点$\mathrm{P}_3$をとる.以下同様にして,$\triangle \mathrm{P}_n \mathrm{Q}_n \mathrm{P}_{n+1}$が正三角形になるように,辺$\mathrm{AB}$上に点$\mathrm{Q}_n$,辺$\mathrm{AC}$上に点$\mathrm{P}_{n+1}$をとる.($n=1,\ 2,\ 3,\ \cdots$)
(図は省略)

$\triangle \mathrm{P}_n \mathrm{Q}_n \mathrm{P}_{n+1}$の面積を$S_n$,$\triangle \mathrm{Q}_n \mathrm{P}_{n+1} \mathrm{Q}_{n+1}$の面積を$T_n$とする.

(1)$\mathrm{BC}$と$\mathrm{P}_1 \mathrm{P}_2$の長さを,二重根号を用いない形で求めよ.
(2)$S_1,\ T_1$の値を求めよ.
(3)$S_n$を$n$を用いて表せ.また,$\displaystyle S_n<\frac{1}{1000}$をみたす最小の$n$の値を求めよ.
(4)$T_n$を$n$を用いて表せ.また,和$\displaystyle \sum_{n=1}^5 T_n$の値を求めよ.
久留米大学 私立 久留米大学 2012年 第2問
曲線$y=2 \tan^2 x$上の点$\displaystyle \left( \frac{\pi}{4},\ 2 \right)$における接線$\ell$の方程式は$y=[$3$]$であり,この曲線と接線$\ell$および$x$軸によって囲まれた部分の面積は$[$4$]$となる.ただし,$\displaystyle 0 \leqq x<\frac{\pi}{2}$とする.
久留米大学 私立 久留米大学 2012年 第7問
$f(x)=a \cos x$,$g(x)=\sin x$,$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$とする.曲線$y=f(x)$,$x$軸,$y$軸で囲まれた部分の面積を$S$,曲線$y=f(x)$,曲線$y=g(x)$,$y$軸で囲まれた部分の面積を$S_1$とする.

(1)曲線$y=f(x)$と曲線$y=g(x)$が$\displaystyle x=\frac{\pi}{6}$で交わるとき,$a=[$17$]$,$\displaystyle \frac{S_1}{S}=[$18$]$である.
(2)$\displaystyle \frac{S_1}{S}=\frac{2}{3}$のとき$a=[$19$]$となる.
中央大学 私立 中央大学 2012年 第1問
次の問題文の空欄にもっとも適する答えを解答群から選び,その記号をマークせよ.ただし,同じ記号を$2$度以上用いてもよい.

$a,\ b,\ r,\ k$は$a>b>0$,$r>0$,$k>0$を満たす定数とする.
座標平面の相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が円$X^2+Y^2=r^2$の上を動くとき,$\triangle \mathrm{ABC}$の面積$S_1$の最大値は次のようにして求められる.まず,$2$点$\mathrm{B}$,$\mathrm{C}$を固定して点$\mathrm{A}$を動かすとき,その三角形の高さに注意すれば,面積が最大となるのは,$\mathrm{AB}=\mathrm{AC}$であるような二等辺三角形のときである.したがって,この円に内接する二等辺三角形のうちで面積が最大のものを見つければよい.そこで,$\mathrm{A}(0,\ r)$,$\mathrm{B}(-r \cos \theta,\ r \sin \theta)$,$\mathrm{C}(r \cos \theta,\ r \sin \theta)$ $\displaystyle \left( -\frac{\pi}{2}<\theta<\frac{\pi}{2} \right)$とすれば$S_1$の最大値は$\sin \theta=[ア]$のとき$S_1=[イ] r^2$であることがわかる.
点$\mathrm{P}(x,\ y)$の$y$座標を$k$倍した点を$\mathrm{P}^\prime(x,\ ky)$とおく.相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標を$\mathrm{A}(x_1,\ y_1)$,$\mathrm{B}(x_2,\ y_2)$,$\mathrm{C}(x_3,\ y_3)$としたとき,$\triangle \mathrm{ABC}$の面積$S$は内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$を用いて計算すると$[ウ]$と表される.したがって,点$\mathrm{A}^\prime(x_1,\ ky_1)$,$\mathrm{B}^\prime(x_2,\ ky_2)$,$\mathrm{C}^\prime(x_3,\ ky_3)$のなす三角形の面積を$S_2$とおくと,$S_2$は$S$の$[エ]$倍である.
点$\mathrm{P}(x,\ y)$は楕円$\displaystyle E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$の上を動く点とする.$\displaystyle k=\frac{a}{b}$であるとき,点$\mathrm{P}^\prime(x,\ ky)$は原点を中心とする半径$[オ]$の円上を動く.したがって,相異なる$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が楕円$E$上を動くとき,$\triangle \mathrm{ABC}$の面積の最大値は$a,\ b$を用いて$[カ]$と表される.

\begin{itemize}
ア,イの解答群
\[ \begin{array}{lllll}
\marua -\displaystyle\frac{1}{2} \phantom{AAA} & \marub -\displaystyle\frac{1}{3} \phantom{AAA} & \maruc \displaystyle\frac{1}{3} & \marud \displaystyle\frac{1}{2} \phantom{AAA} & \marue \displaystyle\frac{16}{9} \\ \\
\maruf -\displaystyle\frac{\sqrt{3}}{2} & \marug -\displaystyle\frac{\sqrt{3}}{3} & \maruh \displaystyle\frac{\sqrt{3}}{4} & \marui \displaystyle\frac{\sqrt{3}}{2} & \maruj \displaystyle\frac{3 \sqrt{3}}{4} \\ \\
\maruk \displaystyle\frac{8 \sqrt{2}}{9} & \marul \displaystyle\frac{2+\sqrt{3}}{4} & \marum \displaystyle\frac{\sqrt{2}(1+\sqrt{3})}{3} & &
\end{array} \]
ウの解答群

\mon[$\marua$] $\displaystyle |(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)|$

\mon[$\marub$] $\displaystyle\frac{1}{2} |(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)|$

\mon[$\maruc$] $\displaystyle |(x_2-x_1)(y_3-y_1)-(x_3-x_1)(y_2-y_1)|$

\mon[$\marud$] $\displaystyle\frac{1}{2} |(x_2-x_1)(y_3-y_1)-(x_3-x_1)(y_2-y_1)|$

\mon[$\marue$] $\displaystyle |(x_2-x_1)(y_3-y_1)+(x_3-x_1)(y_2-y_1)|$

\mon[$\maruf$] $\displaystyle\frac{1}{2} |(x_2-x_1)(y_3-y_1)+(x_3-x_1)(y_2-y_1)|$

\mon[$\marug$] $\displaystyle \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \sqrt{(x_3-x_1)^2+(y_3-y_1)^2}$
$\displaystyle -\{(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)\}$

\mon[$\maruh$] $\displaystyle\frac{1}{2} \biggl[ \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \sqrt{(x_3-x_1)^2+(y_3-y_1)^2}$
$\displaystyle -\{(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)\} \biggr]$

エの解答群
\[ \marua \frac{1}{k^3} \quad \marub \frac{1}{k^2} \quad \maruc \frac{1}{k} \quad \marud \frac{2}{k} \quad \marue \frac{k}{2} \quad \maruf k \quad \marug k^2 \quad \maruh k^3 \]
オの解答群
\[ \begin{array}{lllll}
\marua \displaystyle\frac{a}{2} \phantom{AAA} & \marub \displaystyle\frac{a^2}{4} \phantom{AAA} & \maruc a \phantom{AAA} & \marud a^2 \phantom{AAA} & \marue ab \\
\maruf \displaystyle\frac{b}{2} & \marug \displaystyle\frac{b^2}{4} & \maruh b & \marui b^2 & \maruj (ab)^2 \phantom{\frac{{[ ]}^2}{2}}
\end{array} \]
カの解答群
\[ \begin{array}{lllll}
\marua \displaystyle\frac{\sqrt{3}}{2}ab \phantom{AA} & \marub \displaystyle\frac{8 \sqrt{2}}{9} ab \phantom{AA} & \maruc \displaystyle\frac{\sqrt{3}}{4} ab \phantom{AA} & \marud \displaystyle\frac{16}{9}ab \phantom{AA} & \marue \displaystyle\frac{3 \sqrt{3}}{4} ab \\ \\
\maruf \displaystyle\frac{\sqrt{3}}{2} \frac{a^3}{b} & \marug \displaystyle\frac{8 \sqrt{2}}{9} \frac{a^3}{b} & \maruh \displaystyle\frac{\sqrt{3}}{4} \frac{a^3}{b} & \marui \displaystyle\frac{16}{9} \frac{a^3}{b} & \maruj \displaystyle\frac{3 \sqrt{3}}{4} \frac{a^3}{b}
\end{array} \]
\end{itemize}
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。