タグ「面積」の検索結果

160ページ目:全2409問中1591問~1600問を表示)
山梨大学 国立 山梨大学 2012年 第1問
次の問いに答えよ.

(1)$\overrightarrow{a}$と$\overrightarrow{b}$について,$|\overrightarrow{a}|=1$,$|\overrightarrow{b}|=5$,$\overrightarrow{a} \cdot \overrightarrow{b}=3$である.このとき,$\overrightarrow{p}=3 \overrightarrow{a}-\overrightarrow{b}$の大きさ$|\overrightarrow{p}|$を求めよ.
(2)条件$\left\{ \begin{array}{l}
1 \leqq x-2y \leqq 3 \\
0 \leqq x+y \leqq 1
\end{array} \right.$の表す領域$D$を図示せよ.
(3)$0 \leqq \theta<2\pi$のとき,不等式$3 \sin \theta-1<\cos 2\theta$を満たす$\theta$の値の範囲を求めよ.
(4)平面上に点$\mathrm{A}(1,\ 1)$,$\mathrm{B}(-1,\ -1)$がある.点$\mathrm{P}$が曲線$y=x^3$の$0<x<1$の部分を動くとき,$\triangle \mathrm{ABP}$の面積の最大値を求めよ.
山梨大学 国立 山梨大学 2012年 第2問
$a$を定数,$h$を正の定数とし,放物線$C:y=x^2$と直線$x=a$との交点を$\mathrm{P}$,放物線$C$と直線$x=a+h$との交点を$\mathrm{Q}$とする.また,直線$\mathrm{PQ}$に平行で放物線$C$に接する直線を$\ell$とする.

(1)直線$\ell$の方程式を求めよ.
(2)直線$\ell$と直線$x=a$との交点を$\mathrm{R}$,直線$\ell$と直線$x=a+h$との交点を$\mathrm{S}$とする.直線$\mathrm{PQ}$と放物線$C$に囲まれた図形の面積を$A_1$,四角形$\mathrm{PRSQ}$の面積を$A_2$としたとき,$\displaystyle \frac{A_1}{A_2}$の値は$a$と$h$に無関係に一定となることを示せ.
愛媛大学 国立 愛媛大学 2012年 第3問
次の問いに答えよ.

(1)放物線$y=x^2+2x-3$と直線$y=2x+4$の交点の座標を求めよ.
(2)次の連立不等式で表される領域を$D$とする.領域$D$を図示し,その面積を求めよ.
\[ \left\{ \begin{array}{l}
y \geqq x^2+2x-3 \\
y \leqq 2x+4 \\
y \leqq 0
\end{array} \right. \]
(3)点$(x,\ y)$が(2)の領域$D$を動くとき,$x+2y$のとりうる値の範囲を求めよ.
山梨大学 国立 山梨大学 2012年 第1問
次の問題文の枠内にあてはまる数あるいは数式を答えよ.

(1)関数$f(x)$が$p$を周期とする周期関数であるとは,すべての$x$で等式$[ ]$が成立することである.関数$\displaystyle g(x)=\sin^2 \left( 5x+\frac{\pi}{3} \right)$の正の最小の周期は$[ ]$である.
(2)実数$x$が$-\pi<x \leqq \pi$のとき,無限級数$\displaystyle \sum_{k=1}^\infty \sin^k x$が収束する条件は,$x$の値が$[ ]$以外のときであり,収束するときの無限級数の和は$[ ]$である.
(3)$\displaystyle \int_{-10}^0 \frac{1}{(x+11)(x+12)} \, dx=[ ]$であり,$\displaystyle \int_{-10}^0 \log (x+11) \, dx=[ ]$である.
(4)楕円$9x^2+4y^2+36x-40y+100=0$の$2$つの焦点のうち,$y$座標が大きい方の座標は$[ ]$である.この楕円の長軸の長さは$[ ]$である.
(5)関数$f(x)$を$f(x)=2x^2+1$とし,区間$[0,\ 1]$を$n$等分した小区間を,$\displaystyle \left[ \frac{0}{n},\ \frac{1}{n} \right]$,$\displaystyle \left[ \frac{1}{n},\ \frac{2}{n} \right]$,$\cdots$,$\displaystyle \left[ \frac{n-1}{n},\ \frac{n}{n} \right]$とする.各小区間を底辺とする$n$個の長方形の面積の総和をとる.$k$番目の小区間$\displaystyle \left[ \frac{k-1}{n},\ \frac{k}{n} \right]$において,長方形の高さとして左端での関数$f(x)$の値を用いたとき,この小区間での長方形の面積は$[ ]$となり,それらの長方形の面積の総和を$s_n$とする.また,$k$番目の小区間$\displaystyle \left[ \frac{k-1}{n},\ \frac{k}{n} \right]$において,長方形の高さとして右端での関数$f(x)$の値を用いたときの長方形の面積の総和を$S_n$とする.このとき,$S_n-s_n$は$[ ]$となる.
愛媛大学 国立 愛媛大学 2012年 第4問
図のような$1$辺の長さを$1$とする立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$を考える. \\
線分$\mathrm{AH}$と線分$\mathrm{ED}$の交点を$\mathrm{K}$とする.さらに,辺$\mathrm{CG}$を$3:1$ \\
に内分する点を$\mathrm{L}$とし,辺$\mathrm{EF}$を$p:1-p$に内分する点を$\mathrm{M}$と \\
する.ただし,$0<p<1$である.また,$\overrightarrow{a}=\overrightarrow{\mathrm{EF}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{EH}}$, \\
$\overrightarrow{c}=\overrightarrow{\mathrm{EA}}$とおく.
\img{669_2872_2012_1}{38}

(1)$\overrightarrow{\mathrm{KL}}$および$\overrightarrow{\mathrm{KM}}$をそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{KL}}$と$\overrightarrow{\mathrm{KM}}$が垂直になるような$p$の値を求めよ.
(3)直線$\mathrm{KL}$と面$\mathrm{EFGH}$を含む平面との交点を$\mathrm{Q}$とする.

(i) 線分$\mathrm{EQ}$の長さを求めよ.
(ii) $\triangle \mathrm{EKQ}$の面積を求めよ.
愛媛大学 国立 愛媛大学 2012年 第4問
実数$a$は$a>e$を満たすとし,曲線$y=\log x$上の点$\mathrm{A}(a,\ \log a)$における接線を$\ell$とする.

(1)$\ell$と$y$軸との交点を$\mathrm{B}$とし,$\ell$と$x$軸との交点を$\mathrm{C}$とする.$\mathrm{B}$と$\mathrm{C}$の座標を求めよ.
(2)$\ell$と$x$軸,$y$軸で囲まれた部分の面積を$S_1(a)$とし,曲線$y=\log x$と$x$軸および直線$x=a$で囲まれた部分の面積を$S_2(a)$とする.$S_1(a)$と$S_2(a)$を求めよ.
(3)$T(a)=S_2(a)-S_1(a)$とおく.$e^2 \leqq a \leqq e^3$における$T(a)$の最大値と最小値を求めよ.
愛媛大学 国立 愛媛大学 2012年 第1問
図のような$1$辺の長さを$1$とする立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$を考える. \\
線分$\mathrm{AH}$と線分$\mathrm{ED}$の交点を$\mathrm{K}$とする.さらに,辺$\mathrm{CG}$を$3:1$ \\
に内分する点を$\mathrm{L}$とし,辺$\mathrm{EF}$を$p:1-p$に内分する点を$\mathrm{M}$と \\
する.ただし,$0<p<1$である.また,$\overrightarrow{a}=\overrightarrow{\mathrm{EF}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{EH}}$, \\
$\overrightarrow{c}=\overrightarrow{\mathrm{EA}}$とおく.
\img{669_2872_2012_1}{38}

(1)$\overrightarrow{\mathrm{KL}}$および$\overrightarrow{\mathrm{KM}}$をそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{KL}}$と$\overrightarrow{\mathrm{KM}}$が垂直になるような$p$の値を求めよ.
(3)直線$\mathrm{KL}$と面$\mathrm{EFGH}$を含む平面との交点を$\mathrm{Q}$とする.

(i) 線分$\mathrm{EQ}$の長さを求めよ.
(ii) $\triangle \mathrm{EKQ}$の面積を求めよ.
愛媛大学 国立 愛媛大学 2012年 第1問
図のような$1$辺の長さを$1$とする立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$を考える. \\
線分$\mathrm{AH}$と線分$\mathrm{ED}$の交点を$\mathrm{K}$とする.さらに,辺$\mathrm{CG}$を$3:1$ \\
に内分する点を$\mathrm{L}$とし,辺$\mathrm{EF}$を$p:1-p$に内分する点を$\mathrm{M}$と \\
する.ただし,$0<p<1$である.また,$\overrightarrow{a}=\overrightarrow{\mathrm{EF}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{EH}}$, \\
$\overrightarrow{c}=\overrightarrow{\mathrm{EA}}$とおく.
\img{669_2872_2012_1}{38}

(1)$\overrightarrow{\mathrm{KL}}$および$\overrightarrow{\mathrm{KM}}$をそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{KL}}$と$\overrightarrow{\mathrm{KM}}$が垂直になるような$p$の値を求めよ.
(3)直線$\mathrm{KL}$と面$\mathrm{EFGH}$を含む平面との交点を$\mathrm{Q}$とする.

(i) 線分$\mathrm{EQ}$の長さを求めよ.
(ii) $\triangle \mathrm{EKQ}$の面積を求めよ.
鳴門教育大学 国立 鳴門教育大学 2012年 第4問
半径$2$の円に内接する四角形$\mathrm{ABCD}$において,$\mathrm{BD}$がこの円の直径であるとする.$\mathrm{AD}=3$,$\mathrm{CD}=2$とするとき,次の問いに答えよ.

(1)四角形$\mathrm{ABCD}$の面積を求めよ.
(2)$\mathrm{AC}$の長さを求めよ.
(3)$\mathrm{AC}$と$\mathrm{BD}$の交点を$\mathrm{E}$とし,$\angle \mathrm{AEB}=\theta$とする.このとき,$\sin \theta$の値を求めよ.
東京海洋大学 国立 東京海洋大学 2012年 第3問
定数$a (a \neq 1)$に対し,$f(x)=x^3-(a+2)x^2+(2a+1)x-a$とする.

(1)方程式$f(x)=0$の解を$a$を用いて表せ.
(2)関数$f(x)$の極値を$a$を用いて表せ.
(3)曲線$y=f(x)$と$x$軸で囲まれた図形の面積を$a$を用いて表せ.
ただし,$\displaystyle \int x^3 \, dx=\frac{x^4}{4}+C$($C$は積分定数)を用いてよい.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。