タグ「面積」の検索結果

158ページ目:全2409問中1571問~1580問を表示)
京都工芸繊維大学 国立 京都工芸繊維大学 2012年 第1問
$k$は正の実数とする.$xy$平面において,$x$軸および2つの曲線
\[ C_1:y=k \cos x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right),\quad C_2:y=\frac{1}{k}\sin x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right) \]
で囲まれた図形の面積を$S(k)$とする.

(1)$C_1$と$C_2$の交点の$x$座標を$\alpha$とするとき,$\cos \alpha$および$\sin \alpha$を$k$を用いて表せ.
(2)$S(k)$を$k$を用いて表せ.
(3)$k$が$k>0$の範囲を動くときの$S(k)$の最大値を求めよ.
山形大学 国立 山形大学 2012年 第2問
$0<a \leqq 1$とする.このとき,次の問に答えよ.

(1)曲線$y=-x^2+1$と曲線$y=-(x-a)^2+1$の交点の座標を求めよ.
(2)$x$軸,$y$軸および曲線$y=-x^2+1 \ (x \geqq 0)$で囲まれた図形を$A$とし,$x$軸,直線$x=a$および曲線$y=-(x-a)^2+1 \ (x \leqq a)$で囲まれた図形を$B$とする.このとき,$A$と$B$の共通部分の面積$S(a)$を求めよ.
(3)$S(a)=S(1)$を満たす$a$の値を求めよ.ただし$0<a<1$とする.
(4)$S(a)$の最大値を求めよ.
福井大学 国立 福井大学 2012年 第5問
$t$を1以上の実数とし,$f(x)=x^3+x^2-(t^2+t)x-t$とする.曲線$C:y=f(x)$を原点に関して対称移動して得られる曲線を$C_1$,$C$を$x$軸方向に1だけ平行移動して得られる曲線を$C_2$とする.また,$0 \leqq x \leqq 3$の範囲で,曲線$C_1,\ C_2,\ y$軸および直線$x=3$で囲まれた部分の面積を$S(t)$とするとき,以下の問いに答えよ.

(1)曲線$C_1$と$C_2$の交点の座標をすべて求めよ.
(2)$S(t)$を$t$を用いて表せ.
(3)$t$が$t \geqq 1$の範囲を動くとき,$S(t)$の最小値とそのときの$t$の値を求めよ.
福井大学 国立 福井大学 2012年 第3問
$t$を$0 \leqq t \leqq \sqrt{3}$をみたす実数とし,座標空間内に点$\mathrm{P}(t,\ 0,\ \sqrt{3-t^2})$をとる.$\mathrm{P}$を通り$yz$平面に平行な平面を$\beta$とおく.3点$\mathrm{D}(0,\ 1,\ 0)$,$\mathrm{E}(0,\ -1,\ 0)$,$\mathrm{F}(-\sqrt{3},\ 0,\ 0)$に対し,$\beta$と直線$\mathrm{FD}$との交点を$\mathrm{Q}$,$\beta$と直線$\mathrm{FE}$との交点を$\mathrm{R}$とする.$\triangle \mathrm{PQR}$の面積を$S(t)$とおくとき,以下の問いに答えよ.ただし,$S(\sqrt{3})=0$とする.

(1)$S(t)$を$t$を用いて表せ.
(2)$t$が$0 \leqq t \leqq \sqrt{3}$の範囲を動くとき,$S(t)$の最大値を求めよ.
(3)$t$が$0 \leqq t \leqq \sqrt{3}$の範囲を動くとき,$\triangle \mathrm{PQR}$が通過してできる立体の体積$V$を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2012年 第2問
$xyz$空間内に四面体$\mathrm{PABC}$がある.$\triangle \mathrm{ABC}$は$xy$平面内にある鋭角三角形とし,頂点$\mathrm{P}$の$z$座標は正とする.$\mathrm{P}$から$xy$平面に下ろした垂線を$\mathrm{PH}$とし,$\mathrm{H}$は$\triangle \mathrm{ABC}$の内部にあるとする.$\mathrm{H}$から直線$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$に下ろした垂線をそれぞれ$\mathrm{HK}_1$,$\mathrm{HK}_2$,$\mathrm{HK}_3$とする.そのとき$\mathrm{PK}_1 \perp \mathrm{AB}$,$\mathrm{PK}_2 \perp \mathrm{BC}$,$\mathrm{PK}_3 \perp \mathrm{CA}$である.$\angle \mathrm{PK}_1 \mathrm{H}=\alpha_1$,$\angle \mathrm{PK}_2 \mathrm{H}=\alpha_2$,$\angle \mathrm{PK}_3 \mathrm{H}=\alpha_3$とし,$\triangle \mathrm{PAB}$,$\triangle \mathrm{PBC}$,$\triangle \mathrm{PCA}$の面積をそれぞれ$S_1,\ S_2,\ S_3$とする.

(1)$\triangle \mathrm{HAB}$の面積を$\alpha_1,\ S_1$を用いて表せ.
(2)3つのベクトル$\overrightarrow{l_1}$,$\overrightarrow{l_2}$,$\overrightarrow{l_3}$は,大きさがそれぞれ$S_1,\ S_2,\ S_3$であり,向きがそれぞれ平面$\mathrm{PAB}$,平面$\mathrm{PBC}$,平面$\mathrm{PCA}$に垂直であるとする.ただし,$\overrightarrow{l_1}$,$\overrightarrow{l_2}$,$\overrightarrow{l_3}$の$z$成分はすべて正とする.このとき,$\overrightarrow{l_1}+\overrightarrow{l_2}+\overrightarrow{l_3}$の$z$成分は$\triangle \mathrm{ABC}$の面積に等しいことを示せ.
(3)3辺$\mathrm{AB},\ \mathrm{BC},\ \mathrm{CA}$の長さの比$\mathrm{AB}:\mathrm{BC}:\mathrm{CA}$を,$\alpha_1,\ \alpha_2,\ \alpha_3,\ S_1,\ S_2,\ S_3$を用いて表せ.
山形大学 国立 山形大学 2012年 第1問
単位円の円周を$6$等分する点を時計回りの順に$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$,$\mathrm{P}_5$,$\mathrm{P}_6$とする.さいころを投げて出た目$i$と点$\mathrm{P}_i$を対応させる.さいころを$3$回投げて出た目が全て異なる場合は対応する点を結ぶと三角形ができる.次の問に答えよ.

(1)$\triangle \mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_5$と$\triangle \mathrm{P}_1 \mathrm{P}_3 \mathrm{P}_5$の面積をそれぞれ求めよ.
(2)さいころを$3$回投げて,三角形ができる確率を求めよ.
(3)さいころを$3$回投げて,二等辺三角形(ただし正三角形は除く)ができる確率を求めよ.
(4)さいころを$3$回投げてできる図形の面積の期待値を求めよ.
山形大学 国立 山形大学 2012年 第2問
2曲線$C_1:y=(x-a)^2 \ (a \geqq 0)$,$C_2:y=-x^2+b \ (b \geqq 0)$を考える.このとき,次の問に答えよ.

(1)$a=1,\ b=1$のとき,$C_1$と$C_2$で囲まれた部分の面積を求めよ.
(2)$a=1,\ b=0$のとき,$C_1$と$C_2$の共通接線を求めよ.
(3)$C_1$と$C_2$が共有点を1つだけもつための条件を$a,\ b$で表せ.
(4)(3)の条件のもとでの$C_1$と$C_2$の共有点の軌跡を求めよ.
滋賀医科大学 国立 滋賀医科大学 2012年 第1問
$xyz$空間内の$\overrightarrow{\mathrm{0}}$でないベクトル$\overrightarrow{p}=(x,\ y,\ z)$を考え,$\displaystyle \overrightarrow{p^\prime}=\frac{\overrightarrow{p}}{|\overrightarrow{p}|}$とおく.

(1)$\overrightarrow{p^\prime}$の大きさを求めよ.
(2)$\overrightarrow{p}$と$x$軸,$y$軸,$z$軸の正の向きとのなす角をそれぞれ$\alpha,\ \beta,\ \gamma$とおくとき,$\overrightarrow{p^\prime}=(\cos \alpha,\ \cos \beta,\ \cos \gamma)$を示せ.
(3)$\overrightarrow{p}=(3,\ 4,\ 12)$とする.頂点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(a_1,\ a_2,\ a_3)$,$\mathrm{B}(b_1,\ b_2,\ b_3)$の$\triangle \mathrm{OAB}$について,$\overrightarrow{a}=(a_1,\ a_2,\ a_3)$,$\overrightarrow{b}=(b_1,\ b_2,\ b_3)$はともに$\overrightarrow{p}$に垂直とする.$\triangle \mathrm{OAB}$の面積を$S$とおくとき,$xy$平面上の点$\mathrm{O}$,$\mathrm{A}^\prime(a_1,\ a_2,\ 0)$,$\mathrm{B}^\prime(b_1,\ b_2,\ 0)$が作る$\triangle \mathrm{OA}^\prime \mathrm{B}^\prime$の面積を$S$を用いて表せ.
福井大学 国立 福井大学 2012年 第4問
$xy$平面上に,曲線$C_1:x=t-\sin t,\ y=1-\cos t \ (0 \leqq t \leqq 2\pi)$がある.$0<t<2\pi$をみたす$t$に対し,$C_1$上の点$\mathrm{P}_1(t-\sin t,\ 1-\cos t)$における$C_1$の法線を$m$とおき,$x$軸と$m$の交点を$\mathrm{M}$とし,$\mathrm{M}$が線分$\mathrm{P}_1 \mathrm{P}_2$の中点になるように点$\mathrm{P}_2$をとる.このとき,以下の問いに答えよ.
(図は省略)

(1)直線$m$の方程式を求めよ.また,$\mathrm{M},\ \mathrm{P}_2$の座標を$t$を用いて表せ.さらに,$\mathrm{P}_2$の$x$座標を$f(t)$とおくと,関数$f(t)$は,$0<t<2\pi$で増加することを示せ.
(2)$t$が$0 \leqq t \leqq 2\pi$の範囲を動くときの$\mathrm{P}_2$の軌跡を$C_2$とするとき,$x$軸と曲線$C_2$で囲まれた図形の面積を求めよ.ただし,$t=0,\ 2\pi$に対しては,点$\mathrm{P}_2$をそれぞれ点$(0,\ 0)$,点$(2\pi,\ 0)$にとるものとする.
山口大学 国立 山口大学 2012年 第2問
平面上に異なる2点$\mathrm{A},\ \mathrm{B}$がある.$\mathrm{A}$を通る直線$\ell_1,\ \ell_2,\ \ell_3$ \\
と$\mathrm{B}$を通る直線$m_1,\ m_2,\ m_3$が図のように交わっており, \\
直線$\ell_1$と$m_1$の交点を$\mathrm{P}$,$\ell_2$と$m_2$の交点を$\mathrm{Q}$,$\ell_3$と$m_3$の \\
交点を$\mathrm{R}$とする.ただし,$\ell_1$と$\ell_3$,$\ell_2$と$\ell_3$,$m_1$と$m_2$,$m_2$ \\
と$m_3$のなす角はすべて$\displaystyle \frac{\pi}{3}$であり,$\displaystyle 0<\angle \mathrm{PAB}<\frac{\pi}{3}$, \\
$\displaystyle 0<\angle \mathrm{PBA}<\frac{\pi}{3}$である.$\alpha=\angle \mathrm{PAB}$,$\beta=\angle \mathrm{PBA}$として,次の問いに答えなさい.
\img{650_2779_2012_1}{45}


(1)$\angle \mathrm{APB}+\angle \mathrm{AQB}$を求めなさい.
(2)5点$\mathrm{A}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{B}$,$\mathrm{P}$が同一円周上にあることを示しなさい.
(3)5点$\mathrm{A}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{B}$,$\mathrm{P}$を通る円の半径が1であるとき,五角形$\mathrm{AQRBP}$の面積を$\sin \alpha$,$\sin \beta$,$\sin 2 \alpha$,$\sin 2 \beta$を用いて表しなさい.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。