タグ「面積」の検索結果

150ページ目:全2409問中1491問~1500問を表示)
筑波大学 国立 筑波大学 2012年 第6問
2つの双曲線$C:x^2-y^2=1,\ H:x^2-y^2=-1$を考える.双曲線$H$上の点$\mathrm{P}(s,\ t)$に対して,方程式$sx-ty=1$で定まる直線を$\ell$とする.

(1)直線$\ell$は点$\mathrm{P}$を通らないことを示せ.
(2)直線$\ell$と双曲線$C$は異なる$2$点$\mathrm{Q}$,$\mathrm{R}$で交わることを示し,$\triangle \mathrm{PQR}$の重心$\mathrm{G}$の座標を$s,\ t$を用いて表せ.
(3)(2)における$3$点$\mathrm{G}$,$\mathrm{Q}$,$\mathrm{R}$に対して,$\triangle \mathrm{GQR}$の面積は点$\mathrm{P}(s,\ t)$の位置によらず一定であることを示せ.
防衛医科大学校 国立 防衛医科大学校 2012年 第1問
以下の問に答えよ.

(1)以下の条件 (ア),(イ) を満たす正の整数は,小さい順に並べると,等差数列になる.この数列の初項と公差を求めよ.

\mon[(ア)] $13$で割ると余りが$2$となる.
\mon[(イ)] $11$で割ると商が奇数,余りが$3$となる.

(2)正六角形$\mathrm{ABCDEF}$の辺$\mathrm{CD}$の中点を$\mathrm{M}$,$\mathrm{CE}$と$\mathrm{AM}$の交点を$\mathrm{N}$とする.このとき,$\triangle \mathrm{NEA}$の面積は$\triangle \mathrm{NCM}$の面積の何倍となるか.
(3)極限値$\displaystyle \lim_{n \to \infty} \frac{1}{n}\sqrt[n]{\frac{(4n)!}{(3n)!}}$を求めよ.
防衛医科大学校 国立 防衛医科大学校 2012年 第3問
媒介変数$t \ (0 < t \leqq \pi)$を用いて
\[ \left\{
\begin{array}{l}
x=\sin t \\
\displaystyle y=\frac{\sqrt{3}}{2} \sin 2t
\end{array}
\right. \]
と表される$xy$平面上の曲線を$C_1$,
\[ \left\{
\begin{array}{l}
\displaystyle x=\cos \theta \sin t-\frac{\sqrt{3}}{2} \sin \theta \sin 2t \\ \\
\displaystyle y=\sin \theta \sin t+\frac{\sqrt{3}}{2} \cos \theta \sin 2t
\end{array}
\right. \]
と表される曲線を$C_2$とする.ここで,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.このとき,以下の問に答えよ.

(1)$xy$平面上に$C_1$の概形を描け.
(2)直線$y=-\sqrt{3}x+k$が,$C_1$と少なくとも1点を共有するための実数$k$の条件を求めよ.
(3)直線$y=(\tan \theta)x+l$が,$C_2$と少なくとも1点を共有するための実数$l$の条件を求めよ.
(4)$C_1$が囲む領域の面積を求めよ.
信州大学 国立 信州大学 2012年 第2問
関数$\displaystyle f(x)=\frac{1}{\sqrt{3}}(1+\sin x)\cos x \ (0 \leqq x \leqq \pi)$を考える.

(1)$f(x)$の増減と極値,および曲線$y=f(x)$の凹凸を調べ,その概形をかけ.
(2)曲線$y=f(x)$と,$x$軸および$2$直線$x=0,\ x=\pi$で囲まれた図形の面積$S$を求めよ.
熊本大学 国立 熊本大学 2012年 第2問
実数$c$に対して,行列
\[ A=\biggl( \begin{array}{cc}
1 & -c \\
c & 1
\end{array} \biggr) \]
で表される1次変換を$T$とするとき,以下の問いに答えよ.

(1)$T$は原点の回りの回転移動と原点中心の拡大(相似変換)との合成変換であることを示せ.
(2)$xy$平面上の同一直線上にない3点P,Q,Rが$T$によってそれぞれP$^\prime$,Q$^\prime$,R$^\prime$に移るとする.三角形P$^\prime$Q$^\prime$R$^\prime$の面積が三角形PQRの面積の2倍となる$c$の値を求めよ.
(3)$c=2$とする.楕円
\[ E:\frac{x^2}{4}+y^2=1 \]
上の点が$T$によって楕円$E^\prime$上の点に移るとする.$E$が$E^\prime$の内部にあることを示し,$E^\prime$の内部にあり$E$の外部にある部分の面積を求めよ.
熊本大学 国立 熊本大学 2012年 第4問
定数$a$は$0<a<1$をみたすとする.曲線$C:y=(x-1)^2$と$C$上の点$(a,\ (a-1)^2)$における接線$\ell$について,以下の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)曲線$C$と接線$\ell$および2直線$x=0,\ x=1$とで囲まれた2つの部分の面積の和$S(a)$の最小値とそのときの$a$の値を求めよ.
(3)曲線$C$と2直線$x=0,\ y=0$とで囲まれ,接線$\ell$の上側にある2つの部分の面積の和$T(a)$の最小値とそのときの$a$の値を求めよ.
滋賀大学 国立 滋賀大学 2012年 第2問
点A$\displaystyle \left( a,\ \frac{1}{2} \right)$を不等式$y < 4x-4x^2$の表す領域内の点とし,点Aを通り傾き$m$の直線を$\ell$とする.直線$\ell$と放物線$y=4x-4x^2$で囲まれた部分の面積を$S$とするとき,次の問いに答えよ.

(1)$a$の値の範囲を求めよ.
(2)$m$を変化させたとき,$S$の最小値を$g(a)$とする.$g(a)$を与える$m$を$a$を用いて表せ.
(3)$g(a)$を最大にする$a$の値を求めよ.また,そのときの直線$\ell$の方程式を求めよ.
熊本大学 国立 熊本大学 2012年 第2問
実数$c$に対して,行列
\[ A=\biggl( \begin{array}{cc}
1 & -c \\
c & 1
\end{array} \biggr) \]
で表される1次変換を$T$とするとき,以下の問いに答えよ.

(1)$xy$平面上の同一直線上にない3点P,Q,Rが$T$によってそれぞれP$^\prime$,Q$^\prime$,R$^\prime$に移るとする.三角形P$^\prime$Q$^\prime$R$^\prime$の面積が三角形PQRの面積の$k$倍($k \geqq 1$)となる$c$の値を求めよ.
(2)楕円
\[ E:\frac{x^2}{4}+y^2=1 \]
上の点が$T$によって楕円$E^\prime$上の点に移るとする.楕円$E^\prime$上のすべての点が楕円$E$の周上または外部にあるための,$c$の条件を求めよ.
弘前大学 国立 弘前大学 2012年 第2問
$f(x)=\{ x^2+(2-e)x+1 \} e^x$とする.ここで$e$は自然対数の底である.

(1)関数$f(x)$の極大値を求めよ.
(2)上で求めた極大値を$b$として,曲線$y=f(x)$と直線$y=b$で囲まれる部分の面積を求めよ.
弘前大学 国立 弘前大学 2012年 第5問
$f(\theta)=\cos 2\theta + 2\cos \theta,\ g(\theta)=\sin 2\theta+2\sin \theta$とする.

(1)$0 \leqq \theta \leqq \pi$の範囲において,関数$f(\theta),\ g(\theta)$の増減を調べよ.
(2)$xy$平面上の曲線$x=f(\theta),\ y=g(\theta) \ (-\pi \leqq \theta \leqq \pi)$で囲まれる図形の面積を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。