タグ「面積」の検索結果

145ページ目:全2409問中1441問~1450問を表示)
名古屋市立大学 公立 名古屋市立大学 2013年 第4問
$xy$平面上の$3$点$\mathrm{A}(a,\ b)$,$\mathrm{B}(-b,\ a)$,$\mathrm{C}(a^2-b^2,\ 4ab)$を考える.ただし,$a,\ b$はそれぞれ$a>0$,$b>0$,$a+b=1$を満たす任意の実数である.次の問いに答えよ.

(1)$a,\ b$が条件を満たしながら動くとき,点$\mathrm{C}$が描く図形を図で示せ.
(2)$\angle \mathrm{ACB}=\theta$とおくとき,$\theta$を最小にする$a$の値を求めよ.
(3)三角形$\mathrm{ABC}$の面積を最大にする$a$の値を求めよ.
名古屋市立大学 公立 名古屋市立大学 2013年 第4問
原点を$\mathrm{O}$とする$xyz$空間内に$1$辺の長さが$1$の正四面体$\mathrm{OPQR}$がある.点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通り$z$軸に平行な$3$直線と$xy$平面との交点をそれぞれ$\mathrm{P}^\prime$,$\mathrm{Q}^\prime$,$\mathrm{R}^\prime$とするとき,次の問いに答えよ.

(1)$\triangle \mathrm{PQR}$,$\triangle \mathrm{P}^\prime \mathrm{Q}^\prime \mathrm{R}^\prime$の面積をそれぞれ$S$,$S_1$とする.$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$の$3$点を通る平面と$xy$平面のなす角を$\theta$とするとき,$S_1=S |\cos \theta|$を示せ.
(2)$\mathrm{O}$が$\triangle \mathrm{P}^\prime \mathrm{Q}^\prime \mathrm{R}^\prime$の周上を含む内部にあるとき,$z$軸と$\triangle \mathrm{PQR}$の交点を$\mathrm{A}$とする.このとき正四面体$\mathrm{OPQR}$の体積$V$は$\displaystyle V=\frac{1}{3} \mathrm{OA} \cdot S_1$となることを示し,$S_1$の最小値を求めよ.
(3)$\mathrm{O}$が$\triangle \mathrm{P}^\prime \mathrm{Q}^\prime \mathrm{R}^\prime$の外部にあり,線分$\mathrm{OP}^\prime$と線分$\mathrm{Q}^\prime \mathrm{R}^\prime$が交点$\mathrm{B}$をもつとき,点$\mathrm{B}$を通り$z$軸に平行な直線と,直線$\mathrm{OP}$および直線$\mathrm{QR}$との交点をそれぞれ$\mathrm{C}$,$\mathrm{D}$とする.このとき四角形$\mathrm{OQ}^\prime \mathrm{P}^\prime \mathrm{R}^\prime$の面積を$S_2$とすると$\displaystyle V=\frac{1}{3} \mathrm{CD} \cdot S_2$となることを示し,$S_2$の最大値を求めよ.
三重県立看護大学 公立 三重県立看護大学 2013年 第3問
$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標が,それぞれ$(4,\ 0,\ 0)$,$(0,\ 3,\ 0)$,$(0,\ 0,\ 8)$のとき,次の問いに答えなさい.

(1)三角形$\mathrm{ABC}$および原点によって囲まれた三角すい$\mathrm{OABC}$を図示し,体積を計算しなさい.
(2)三角形$\mathrm{ABC}$の面積を計算しなさい.
釧路公立大学 公立 釧路公立大学 2013年 第3問
$k$を$0<k<1$の範囲の定数とする.直線$\ell:y=kx$と曲線$C:y=|x^2-2x|$について以下の各問に答えよ.

(1)直線$\ell$と曲線$C$の交点$\mathrm{P}_1(x_1,\ y_1)$,$\mathrm{P}_2(x_2,\ y_2)$を求めよ.ただし,$0<x_1<x_2$とする.
(2)原点を$\mathrm{O}$として,線分$\mathrm{OP}_1$と曲線$C$で囲まれる部分の面積を$S_1$,線分$\mathrm{P}_1 \mathrm{P}_2$と曲線$C$で囲まれる部分の面積を$S_2$とする.このとき,$S_1$と$S_2$をそれぞれ$k$の関数で表せ.
(3)$S=S_1+S_2$とする.このとき,$S$が最小となる$k$の値を求めよ.
三重県立看護大学 公立 三重県立看護大学 2013年 第4問
$a>0$のとき,曲線$y=|x^2-3x|$と直線$y=x+a$について,次の問いに答えなさい.

(1)曲線と直線を図示し,曲線と直線の共有点が$2$点となるように$a$の条件を求めなさい.
(2)$a=2$のとき,曲線と直線によって囲まれた面積を計算しなさい.
札幌医科大学 公立 札幌医科大学 2013年 第3問
曲線$7x^2+2 \sqrt{3}xy+9y^2=30$上の点$(x,\ y)$に対して,変換
\[ \left\{ \begin{array}{l}
X=x \cos \theta-y \sin \theta \\
Y=x \sin \theta+y \cos \theta \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \right. \]
を考える(ただし$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする).このとき$X,\ Y$のみたす式は
\[ a(\theta)X^2+b(\theta)XY+c(\theta)Y^2=30 \]
となる.ただし,$a(\theta)$,$b(\theta)$,$c(\theta)$は$\theta$のみにより決まる定数である.いま,$b(\theta)=0$をみたす$\theta$を$\theta_1$とする.

(1)$\theta_1$を求めよ.
(2)$a(\theta_1)X^2+c(\theta_1)Y^2=30$で囲まれた図形の面積を求めよ.
(3)$a(\theta_1)X^2+c(\theta_1)Y^2=30$に内接する平行四辺形の面積の最大値を求めよ.
島根県立大学 公立 島根県立大学 2013年 第2問
原点$\mathrm{O}$を起点に$\mathrm{XY}$座標軸上を次の法則に従って動く$2$つの点$\mathrm{A}$,$\mathrm{B}$がある.コインを投げて表が出れば点$\mathrm{A}$は$\mathrm{X}$軸上を$+1$だけ動き,点$\mathrm{B}$はその場にとどまる.一方,裏が出れば点$\mathrm{A}$はその場にとどまり,点$\mathrm{B}$は$\mathrm{Y}$軸上を$+1$だけ動く.次の問いに答えよ.

(1)$6$回コインを投げたとき,点$\mathrm{A}$が$(6,\ 0)$の位置に到達する確率を求めよ.
(2)$4$回コインを投げたとき,三角形$\mathrm{OAB}$の面積が$\displaystyle \frac{3}{2}$になる確率を求めよ.
(3)$6$回コインを投げたときの三角形$\mathrm{OAB}$の面積の期待値を求めよ.
島根県立大学 公立 島根県立大学 2013年 第3問
三角形$\mathrm{ABC}$の$3$辺の長さは,$\mathrm{AB}=5$,$\mathrm{BC}=7$,$\mathrm{CA}=8$である.次の問いに答えよ.

(1)$\cos \angle \mathrm{BAC}$の値を求めよ.
(2)三角形$\mathrm{ABC}$に内接する円の面積を求めよ.ただし,円周率は$\pi$とする.
(3)$\angle \mathrm{BAC}$の二等分線と辺$\mathrm{BC}$との交点を$\mathrm{D}$とする.このとき,線分$\mathrm{AD}$の長さを求めよ.
島根県立大学 公立 島根県立大学 2013年 第4問
次の問いに答えよ.

(1)$2$次関数$y=ax^2+bx+c (a \neq 0)$のグラフ$C$は,頂点が$(3,\ s)$で,$2$点$\mathrm{A}(-1,\ 5)$,$\mathrm{B}(5,\ -1)$を通る.このとき,定数$a,\ b,\ c$の値を求めよ.
(2)グラフ$C$上の点$\mathrm{A}$,$\mathrm{B}$における接線をそれぞれ$\ell_1$,$\ell_2$とするとき,$2$本の接線が交わる点$\mathrm{P}$の座標を求めよ.
(3)グラフ$C$と接線$\ell_1$,$\ell_2$で囲まれる部分の面積を求めよ.
札幌医科大学 公立 札幌医科大学 2013年 第4問
関数$f(x)=x \cos x-\sin x$を区間$I:\pi \leqq x \leqq 3\pi$で考える.

(1)不定積分$\displaystyle \int f(x) \, dx$を求めよ.
(2)区間$I$における関数$f(x)$の最大値と最小値を求めよ.区間$I$において$f(x)=0$をみたす$2$点を$x=s,\ t$とする.ただし$s<t$とする.
(3)$s$と$t$は,それぞれ次の$4$つの区間

$\displaystyle \pi \leqq x \leqq \frac{3}{2}\pi,\quad \frac{3}{2}\pi \leqq x \leqq 2\pi,$

$\displaystyle 2\pi \leqq x \leqq \frac{5}{2}\pi,\quad \frac{5}{2}\pi \leqq x \leqq 3\pi$

のどれに入るか.
(4)$x$軸の$4\pi-t \leqq x \leqq 2\pi$の部分,直線$x=4\pi-t$,直線$x=2\pi$および$y=f(x)$で囲まれた図形の面積を$S$とする.また,$x$軸の$2\pi \leqq x \leqq t$の部分,$x=2\pi$および$y=f(x)$で囲まれた図形の面積を$T$とする.このとき$S$と$T$の大小を比較せよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。