タグ「面積」の検索結果

141ページ目:全2409問中1401問~1410問を表示)
早稲田大学 私立 早稲田大学 2013年 第2問
中心$\mathrm{A}(1,\ 1)$,半径$1$の円を$C$とする.原点を通り円$C$と異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わる直線を$\ell$とする.$\mathrm{P}$,$\mathrm{Q}$における円$C$の$2$本の接線が直交するとき,次の問に答えよ.

(1)$\triangle \mathrm{APQ}$の面積$S$を求めよ.
(2)直線$\ell$の傾きを求めよ.
(3)$2$本の接線の交点$\mathrm{R}$の座標を求めよ.
立教大学 私立 立教大学 2013年 第3問
座標平面上に放物線$C:y=ax^2+1$がある.放物線$C$上の点$\mathrm{P}$における接線を$\ell$とし,点$\mathrm{P}$の$x$座標を$p$とする.ただし,$a>0$,$p>0$とする.このとき,次の問に答えよ.

(1)直線$\ell$の方程式を$a,\ p$を用いて表せ.
(2)直線$\ell$,放物線$C$,および$y$軸で囲まれる部分の面積$S$を$a,\ p$を用いて表せ.
(3)直線$\ell$と原点との距離が$1$のとき,$S$を$a$を用いて表せ.
立教大学 私立 立教大学 2013年 第2問
座標平面上に放物線$C:y=x^2+(2-a)x+3-a$がある.放物線$C$上の点$\mathrm{P}(-1,\ 2)$における接線を$\ell$とする.このとき,次の問に答えよ.

(1)直線$\ell$の方程式を$a$を用いて表せ.
(2)直線$\ell$が$x$軸の正の部分と交わり,かつ$y$軸の正の部分と交わるような$a$の値の範囲を求めよ.
(3)$a$の値が$(2)$で求めた範囲にあるとする.$x$軸,$y$軸,直線$\ell$で囲まれる三角形の面積を$S_1$とし,また,$y$軸,直線$\ell$,放物線$C$で囲まれる図形の面積を$S_2$とする.$S_1=3S_2$となるとき,$a$の値を求めよ.
立教大学 私立 立教大学 2013年 第3問
座標平面上に曲線$C:y=x^2 (x \geqq 0)$がある.この曲線$C$上の点$\mathrm{P}(t,\ t^2)$における接線を$\ell$,点$\mathrm{P}$を通り直線$\ell$に垂直な直線を$m$とする.ただし,$t>0$とする.このとき,次の問に答えよ.

(1)直線$\ell$の方程式を$t$を用いて表せ.
(2)曲線$C$,直線$\ell$,$x$軸で囲まれた部分の面積を$S$とする.$S$を$t$を用いて表せ.
(3)直線$m$の方程式を$t$を用いて表せ.
(4)曲線$C$,直線$m$,$y$軸で囲まれた部分の面積を$T$とする.$T$を$t$を用いて表せ.
(5)$S:T=1:9$となるとき,点$\mathrm{P}$の座標を求めよ.
早稲田大学 私立 早稲田大学 2013年 第3問
$1$辺の長さが$1$の正方形$\mathrm{ABCD}$において,図のように$\mathrm{AW}=\mathrm{BX}=\mathrm{CY}=\mathrm{DZ}$となる点$\mathrm{W}$,$\mathrm{X}$,$\mathrm{Y}$,$\mathrm{Z}$をとる.四角形$\mathrm{WXYZ}$に内接する円を$C_0$とし,$\triangle \mathrm{AWZ}$,$\triangle \mathrm{BXW}$,$\triangle \mathrm{CYX}$,$\triangle \mathrm{DZY}$に内接する円をそれぞれ$C_1$,$C_2$,$C_3$,$C_4$とする.$\mathrm{AW}=x$,$\mathrm{ZW}=a$とおくとき
\[ a^2=[セ]x^2+[ソ]x+1 \quad (0<x<1) \]
となる.円$C_0$,$C_1$,$C_2$,$C_3$,$C_4$の面積の総和を$S$とすると
\[ S=\frac{\pi}{4} \left( [タ]a^2+[チ]a+[ツ] \right) \]
となり,$\displaystyle a=\frac{[ト]}{[テ]}$のとき,$S$は最小値$\displaystyle \frac{\pi}{[ナ]}$をとる.
(図は省略)
早稲田大学 私立 早稲田大学 2013年 第1問
$[ア]$~$[オ]$にあてはまる数または式を記入せよ.

(1)どのような$2$次関数$f(x)$に対しても
\[ \int_0^2 f(x) \, dx \]
の値は,$f(0)$,$f(1)$,$f(2)$を用いて$[ア]$と表せる.
(2)$k$を実数とする.$xy$平面上の直線$y-2=k(x-1)$と放物線$y=x^2$によって囲まれる図形の面積は,$k=[イ]$のとき最小値$[ウ]$をとる.
(3)$p$を$5$以上の素数とする.$p^3$を$p-4$で割った余りが$4$であるとき,$p=[エ]$である.
(4)$\displaystyle \sum_{n=1}^{2013} \frac{\sin \displaystyle\frac{2n\pi}{7}-\cos \displaystyle\frac{2n\pi}{7}}{|\sin \displaystyle\frac{2n\pi|{7}-\cos \displaystyle\frac{2n\pi}{7}}}=[オ]$
早稲田大学 私立 早稲田大学 2013年 第5問
空間内に平面$P$がある.空間内の図形$A$に対し,$A$の各点から$P$に下ろした垂線と$P$との交点の全体を,$A$の$P$への正射影とよぶ.次の問に答えよ.

(1)平面$Q$が平面$P$と角$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$で交わっているとする.すなわち,$P$と$Q$の交線に垂直な平面で$P,\ Q$を切ってできる$2$直線のなす角が$\theta$であるとする.$Q$上の長さ$1$の線分の$P$への正射影の長さの最大値と最小値を求めよ.
(2)$(1)$の$Q$を考える.$Q$上の$1$辺の長さが$1$である正三角形の$P$への正射影の面積を求めよ.
(3)$1$辺の長さが$1$である正四面体$T$の$P$への正射影$T^\prime$はどんな形か.また,$T^\prime$の面積の最大値を求めよ.
早稲田大学 私立 早稲田大学 2013年 第3問
$2$つの曲線$y=x^3-x \cdots\cdots①$および$y={(x-a)}^3-(x-a) \cdots\cdots②$がある.ただし,$a>0$とする.次の問に答えよ.

(1)$②$が$x=x_1$で極大値,$x=x_2$で極小値をとり,$x=x_1,\ x_2$における曲線$②$上の点をそれぞれ$\mathrm{A}$,$\mathrm{B}$とするとき,直線$\mathrm{AB}$の方程式を求めよ.
(2)曲線$①,\ ②$が異なる$2$点で交わるとき,$a$の値の範囲を求めよ.
(3)$(2)$のとき,曲線$①,\ ②$の交点の$x$座標を$\alpha,\ \beta (\alpha<\beta)$とする.$\beta-\alpha$を$a$を用いて表せ.
(4)$(2)$のとき,曲線$①,\ ②$で囲まれた部分の面積$S$を$a$を用いて表せ.
早稲田大学 私立 早稲田大学 2013年 第3問
$1$辺の長さが$1$の正方形$\mathrm{ABCD}$において,図のように$\mathrm{AW}=\mathrm{BX}=\mathrm{CY}=\mathrm{DZ}$となる点$\mathrm{W}$,$\mathrm{X}$,$\mathrm{Y}$,$\mathrm{Z}$をとる.四角形$\mathrm{WXYZ}$に内接する円を$C_0$とし,$\triangle \mathrm{AWZ}$,$\triangle \mathrm{BXW}$,$\triangle \mathrm{CYX}$,$\triangle \mathrm{DZY}$に内接する円をそれぞれ$C_1$,$C_2$,$C_3$,$C_4$とする.$\mathrm{AW}=x$,$\mathrm{ZW}=a$とおくとき
\[ a^2=[セ]x^2+[ソ]x+1 \quad (0<x<1) \]
となる.円$C_0$,$C_1$,$C_2$,$C_3$,$C_4$の面積の総和を$S$とすると
\[ S=\frac{\pi}{4} \left( [タ]a^2+[チ]a+[ツ] \right) \]
となり,$\displaystyle a=\frac{[ト]}{[テ]}$のとき,$S$は最小値$\displaystyle \frac{\pi}{[ナ]}$をとる.
(図は省略)
立教大学 私立 立教大学 2013年 第2問
関数$F(x)$を次のように定める.
\[ F(x)=\left\{ \begin{array}{ll}
x^2 & (x \leqq 1) \\
-x^2+2x & (x>1) \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
実数$k$が$0<k<1$を満たすとき,次の問に答えよ.

(1)直線$y=kx$と曲線$y=F(x)$の交点のうち,原点とは異なるものをすべて求めよ.
(2)直線$y=kx$と曲線$y=F(x)$で囲まれた$2$つの部分のうち,直線$y=kx$の下側にある部分の面積$S_1$を$k$を用いて表せ.
(3)直線$y=kx$と曲線$y=F(x)$で囲まれた$2$つの部分のうち,直線$y=kx$の上側にある部分の面積$S_2$を$k$を用いて表せ.
(4)$(2)$で求めた$S_1$と$(3)$で求めた$S_2$の和$S=S_1+S_2$が最小となるときの$k$の値を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。