タグ「面積」の検索結果

139ページ目:全2409問中1381問~1390問を表示)
九州産業大学 私立 九州産業大学 2013年 第2問
放物線$y=x^2-4x+6$と放物線$y=2x^2-7x+8$がある.原点を$\mathrm{O}$とし,この$2$つの放物線の交点を$x$座標の小さい順に$\mathrm{A}$,$\mathrm{B}$とする.点$\mathrm{C}$は$\triangle \mathrm{OAB}$の外接円上にあり$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$とは異なる点とする.

(1)点$\mathrm{A}$の座標は$([ア],\ [イ])$,点$\mathrm{B}$の座標は$([ウ],\ [エ])$である.
(2)$\triangle \mathrm{OAB}$の面積は$[オ]$である.
(3)$\triangle \mathrm{OAB}$の外接円の半径は$\displaystyle \frac{\sqrt{[カキ]}}{[ク]}$である.
(4)$\triangle \mathrm{OAB}$と$\triangle \mathrm{OBC}$の面積が等しいとき,点$\mathrm{C}$の座標は$([ケコ],\ [サ])$である.
九州産業大学 私立 九州産業大学 2013年 第3問
関数$f(x)=|x^2-2x-3|$と,曲線$C:y=f(x)$,直線$\ell:y=x+1$について考える.

(1)曲線$C$と$x$軸との交点の$x$座標は,小さい順に$[アイ]$,$[ウ]$である.
(2)関数$f(x)$の$-2 \leqq x \leqq 2$における最大値は$[エ]$であり,最小値は$[オ]$である.
(3)曲線$C$と$x$軸により囲まれた部分の面積は$\displaystyle \frac{[カキ]}{[ク]}$である.

(4)曲線$C$と直線$\ell$との交点の$x$座標は,小さい順に$[ケコ]$,$[サ]$,$[シ]$である.

(5)曲線$C$と直線$\ell$により囲まれた$2$つの部分の面積の和は$\displaystyle \frac{[スセ]}{[ソ]}$である.
東京都市大学 私立 東京都市大学 2013年 第2問
$\displaystyle y=\frac{1}{2}x^2$で表される放物線$P$と,$x^2+(y-k)^2=r^2 (r>0)$で表される円$Q$がある.放物線$P$上に点$\displaystyle \mathrm{A} \left( 1,\ \frac{1}{2} \right)$をとるとき,次の問いに答えよ.

(1)点$\mathrm{A}$における放物線$P$の接線$\ell$の方程式を求めよ.
(2)直線$\ell$が点$\mathrm{A}$で円$Q$に接するとき,$k$と$r$の値を求めよ.
(3)$(2)$で求めた$k$と$r$において,次の連立不等式が表す領域の面積を求めよ.
\setstretch{2}
\[ \left\{ \begin{array}{l}
y \geqq \displaystyle\frac{1}{2}x^2 \\
x^2+(y-k)^2 \geqq r^2 \\
y \leqq \displaystyle\frac{1}{2}
\end{array} \right. \]
\setstretch{1.4}
桜美林大学 私立 桜美林大学 2013年 第2問
座標平面上に$3$直線$\ell_1:x+5y-5=0$,$\ell_2:2x-3y+3=0$,$\ell_3:5x-y-25=0$がある.

(1)$\ell_1$と$\ell_2$,$\ell_2$と$\ell_3$,$\ell_3$と$\ell_1$の交点を順に$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とする.それぞれの交点の座標は$\mathrm{A}([ツ],\ [テ])$,$\mathrm{B}([ト],\ [ナ])$,$\mathrm{C}([ニ],\ [ヌ])$である.
(2)三角形$\mathrm{ABC}$の面積は$[ネ][ノ]$である.
(3)点$\mathrm{A}$を通る直線$m$が三角形$\mathrm{ABC}$の面積を$2$等分するとき,$m$の方程式は,$3x+[ハ][ヒ]y+[フ][ヘ]=0$である.
大阪工業大学 私立 大阪工業大学 2013年 第4問
$2$つの放物線$C_1:y=x^2-2x-a$と$C_2:y=-x^2-2x+a$について,次の問いに答えよ.ただし,$a>0$とする.

(1)$C_1$と$C_2$の$2$つの共有点を通る直線$\ell$の方程式を求めよ.
(2)$C_1$と直線$\ell$で囲まれた図形の面積$S$を$a$を用いて表せ.
(3)$\displaystyle S=\frac{9}{2}$となるとき,$a$の値を定めよ.
産業医科大学 私立 産業医科大学 2013年 第2問
$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$において定義された$2$つの曲線
\[ y=a \sin 2x,\quad y=\sin 4x \]
について次の問いに答えなさい.ただし,$a$は定数である.

(1)$2$つの曲線が$\displaystyle 0<x<\frac{\pi}{2}$で交点を持つように$a$の値の範囲を定めなさい.
(2)$a$が$(1)$で定められた範囲にあるとき,$2$つの曲線によって囲まれた図形は$(1)$の交点を境にして$2$つの部分に分けられる.それらのうち原点を含む部分の面積を$S_1$,原点を含まない部分の面積を$S_2$とする.$S_1:S_2=4:1$となるように$a$の値を定めなさい.
広島工業大学 私立 広島工業大学 2013年 第4問
$\triangle \mathrm{ABC}$において,$\mathrm{BC}=1+\sqrt{6}$,$\mathrm{CA}=2$,$\displaystyle \angle \mathrm{C}=\frac{\pi}{3}$とする.

(1)$\triangle \mathrm{ABC}$の面積$S$を求めよ.
(2)辺$\mathrm{AB}$の長さを求めよ.
(3)$\triangle \mathrm{ABC}$の内接円の半径$r$を求めよ.
広島工業大学 私立 広島工業大学 2013年 第8問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=6$,$\mathrm{BC}=4$,$\mathrm{CA}=5$とする.$\triangle \mathrm{ABC}$の外接円上の点$\mathrm{P}$が,頂点$\mathrm{C}$を含まない弧$\mathrm{AB}$上にある.次の問いに答えよ.

(1)$\cos C$の値を求めよ.
(2)点$\mathrm{P}$が$\mathrm{AP}=4$を満たすとき,線分$\mathrm{BP}$の長さを求めよ.
(3)点$\mathrm{P}$が動くとき,$\triangle \mathrm{APB}$の面積の最大値を求めよ.
大阪工業大学 私立 大阪工業大学 2013年 第4問
関数$f(x)=\log x$について,次の問いに答えよ.

(1)曲線$y=f(x)$上の点$\mathrm{P}(a,\ f(a))$における接線$\ell_1$が原点$\mathrm{O}$を通るとき,$a$の値を求めよ.
(2)$a$を$(1)$で求めた値とするとき,曲線$y=f(x)$上の点$\mathrm{P}(a,\ f(a))$における法線$\ell_2$の方程式を求めよ.
(3)部分積分法を用いて,$\displaystyle \int \log x \, dx$を計算せよ.
(4)$(2)$で求めた法線$\ell_2$と曲線$y=\log x$および$x$軸で囲まれた図形の面積$S$を求めよ.
成城大学 私立 成城大学 2013年 第3問
一辺の長さが$a_1$の正方形$\mathrm{S}_1$がある.以下の図のように,$\mathrm{S}_1$の対角線を一辺とする正方形$\mathrm{S}_2$をつくり,その一辺の長さを$a_2$とする.さらに,$\mathrm{S}_2$の対角線を一辺とする正方形$\mathrm{S}_3$をつくり,その一辺の長さを$a_3$とする.

以下,$1 \leqq n \leqq 7$に対して同様にしてつくられる正方形$\mathrm{S}_n$の一辺の長さを$a_n$とし,$n$個の正方形$\mathrm{S}_1,\ \cdots,\ \mathrm{S}_n$が重なってできる多角形の面積を$A_n$とするとき,以下の問いに答えよ.ただし,正方形は点$\mathrm{O}$を中心として反時計回りに回転するものとする.

(1)$a_n$を$a_1$を用いて表せ.
(2)$A_2$および$A_3$を$a_1$を用いて表せ.
(3)$A_n$を$a_1$を用いて表せ.
(図は省略)
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。