タグ「面積」の検索結果

134ページ目:全2409問中1331問~1340問を表示)
津田塾大学 私立 津田塾大学 2013年 第1問
次の問に答えよ.

(1)極限値$\displaystyle \lim_{x \to 0} \frac{x(e^{3x}-1)}{1-\cos x}$を求めよ.

(2)関数$y=f(x)$は$0 \leqq x \leqq 3$において連続で,$f(x)>0$とする.曲線$y=f(x)$,$x$軸,および直線$x=0$,$x=3$により囲まれた図形を$D$とする.$D$を$x$軸のまわりに$1$回転してできる回転体の体積は$6 \pi$であり,$D$を直線$y=-1$のまわりに$1$回転してできる回転体の体積は$13 \pi$である.$D$の面積を求めよ.
津田塾大学 私立 津田塾大学 2013年 第4問
実数$\alpha>1$に対して
\[ y=\alpha x^2+(1-\alpha)x \]
で表される曲線を$C$とする.

(1)$C$と$x$軸および直線$x=1$で囲まれた$2$つの部分の面積の和$S(\alpha)$を求めよ.
(2)$S(\alpha)$が最小となるような$\alpha$の値を求めよ.
愛知工業大学 私立 愛知工業大学 2013年 第2問
$xy$平面において,曲線$\displaystyle y=\frac{1}{x} (x>0)$を$C_1$とする.

(1)点$(x,\ y)$が曲線$C_1$上を動くとき,$x^2+2y$の最小値$k$を求めよ.
(2)$(1)$の$k$の値に対して,曲線$x^2+2y=k$を$C_2$とする.曲線$C_2$と$x$軸の正の部分との交点を$(a,\ 0)$とする.このとき,$2$つの曲線$C_1$,$C_2$および直線$x=a$で囲まれた部分の面積を求めよ.
愛知工業大学 私立 愛知工業大学 2013年 第1問
次の$[ ]$を適当に補え.

(1)$\displaystyle \frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}}+\frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}=[ ]$,$\displaystyle \left( \frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}} \right)^2+\left( \frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}} \right)^2=[ ]$である.

(2)$10$本のくじの中に$2$本の当たりくじがある.このくじを$\mathrm{A}$君が$2$本引き,次に$\mathrm{B}$さんが$2$本引く.ただし,引いたくじはもとに戻さないとする.このとき,$\mathrm{A}$君が$1$本も当たらない確率は$[ ]$である.また,$\mathrm{B}$さんが少なくとも$1$本当たる確率は$[ ]$である.
(3)$1$辺の長さが$1$の正四面体$\mathrm{OABC}$において,辺$\mathrm{AB}$の中点を$\mathrm{P}$,辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{Q}$とする.このとき,$\overrightarrow{\mathrm{OP}}$と$\mathrm{OQ}$の内積は$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OQ}}=[ ]$である.また,$\triangle \mathrm{OPQ}$の面積は$[ ]$である.
(4)複素数$z=x+yi$($x,\ y$は実数,$i$は虚数単位)に対して,$|z|=\sqrt{x^2+y^2}$とする.このとき,$|z|=1$と$|z-i|=1$を同時にみたす複素数$z$は$z=[ ]$である.
(5)$\displaystyle 0<\theta<\frac{\pi}{2}$とする.$\displaystyle \frac{1}{\sin \theta}+\frac{1}{\cos \theta}=2 \sqrt{6}$のとき,$\sin \theta \cos \theta=[ ]$であり,$\theta=[ ]$である.
(6)$\displaystyle \int_0^{\frac{\pi}{4}} x \sin 3x \, dx=[ ]$
愛知工業大学 私立 愛知工業大学 2013年 第3問
$xy$平面において,曲線$y=-x^2-2x+6$を$C_1$,曲線$y=3 |x|$を$C_2$とする.

(1)$C_1$と$C_2$の交点の$x$座標を求めよ.
(2)$C_1$と$C_2$で囲まれた部分の面積を求めよ.
藤田保健衛生大学 私立 藤田保健衛生大学 2013年 第4問
$\displaystyle 0 \leqq t \leqq \frac{\pi}{2}$とする.時刻$t$における座標平面上の点$\mathrm{P}(x,\ y)$の位置が$x=\sin t$,$y=\sin 2t$で与えられている.

(1)原点$\mathrm{O}(0,\ 0)$から点$\mathrm{P}$が最も遠方にあるとき,$2$点$\mathrm{O}$,$\mathrm{P}$間の距離は$[ ]$であり,そのときの点$\mathrm{P}$の速度$\overrightarrow{v}$は$\overrightarrow{v}=[ ]$である.
(2)点$\mathrm{P}$の軌跡を$y=f(x)$と表すと,$f(x)=[ ]$である.ただし$x$の範囲は$[ ]$である.
(3)$(2)$で求めた軌跡と$x$軸とで囲まれてできる図形の面積は$[ ]$である.
獨協大学 私立 獨協大学 2013年 第2問
四角形$\mathrm{ABCD}$の各辺が,下の図のように点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$で円$\mathrm{O}$に外接している.このとき,次の問題に答えよ.
(図は省略)

(1)$\mathrm{AB}+\mathrm{CD}=\mathrm{BC}+\mathrm{DA}$を証明せよ.
(2)円$\mathrm{O}$の半径が$1$のとき,四角形$\mathrm{ABCD}$の面積を$\mathrm{AB}$と$\mathrm{CD}$を用いて表せ.
獨協大学 私立 獨協大学 2013年 第3問
放物線$y=ax^2+bx+c$と放物線$y=x^2-8x$が$x$軸上の異なる$2$点で交わるとする.このとき,次の問題に答えよ.

(1)定数$c$の値を求めよ.
(2)定数$a$を用いて定数$b$を表せ.
(3)$2$つの放物線に囲まれる部分の面積が$64$になるときの$a$の値を求めよ.
東北工業大学 私立 東北工業大学 2013年 第3問
円に内接する四角形$\mathrm{ABCD}$があり,$\mathrm{AD}=5$,$\mathrm{BC}=10$,対角線$\mathrm{BD}=\sqrt{91}$,$\angle \mathrm{BAD}=120^\circ$である.

(1)$\mathrm{AB}=[][]$であり,三角形$\mathrm{ABD}$の面積は$\displaystyle S_1=\frac{[][] \sqrt{3}}{2}$である.
(2)三角形$\mathrm{BCD}$の面積が$\displaystyle S_2=\frac{45 \sqrt{3}}{2}$であれば,$\mathrm{DC}=[][]$である.
(3)この円の半径は$\displaystyle \frac{\sqrt{273}}{[][]}$である.
(4)この円の中心を$\mathrm{O}$としたとき,三角形$\mathrm{BOD}$の面積は$\displaystyle S_3=\frac{91 \sqrt{3}}{[][]}$である.
東京都市大学 私立 東京都市大学 2013年 第2問
次の問に答えよ.

(1)関数$f(x)=x^3+3ax^2+3(10-3a)x$が極値をもつような実数$a$の範囲を求めよ.
(2)曲線$y=e^x-2$と$x$軸および$y$軸で囲まれた部分の面積を求めよ.
(3)定積分$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} (\cos x) \log (\sin x) \, dx$の値を求めよ.ただし,$\log$は自然対数とする.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。