タグ「面積」の検索結果

131ページ目:全2409問中1301問~1310問を表示)
福岡大学 私立 福岡大学 2013年 第7問
$f(x)=-x^2+4x$とする.$a>3$のとき,点$(1,\ a)$から曲線$y=f(x)$に引いた$2$本の接線の接点を$\mathrm{P}(p,\ f(p))$,$\mathrm{Q}(q,\ f(q)) (p<q)$とし,点$\mathrm{P}$を通る接線を$\ell_1$,点$\mathrm{Q}$を通る接線を$\ell_2$とする.このとき,次の問いに答えよ.

(1)接線$\ell_1$の傾きを$a$を用いて表せ.
(2)$2$本の接線$\ell_1$と$\ell_2$が直交するとき,曲線$y=f(x)$と接線$\ell_2$および直線$x=1$で囲まれた図形の面積を求めよ.
西南学院大学 私立 西南学院大学 2013年 第5問
関数$f(x)$を$f(x)=-x^3-3x^2+a$とし,$y=f(x)$で表されるグラフを$C$とする.$C$が極小となる点で$x$軸と接するとき,以下の問に答えよ.

(1)$f(x)$の導関数$f^\prime(x)$を求め,$f(x)$の極小値と極大値および$a$の値を求めよ.
(2)$C$と$x$軸の共有点のうち,$C$が極小とならない座標を求め,その点における$C$の接線$\ell$の方程式を求めよ.
(3)$y=3x^2-3$で表されるグラフを$D$とし,$D$と(2)で求めた$\ell$で囲まれる部分を$E$とする.$E$を$y$軸で$2$分割し,$x \geqq 0$の部分の面積と$x \leqq 0$の部分の面積を求めよ.
福岡大学 私立 福岡大学 2013年 第9問
放物線$y=x^2+2x+2$について,次の問いに答えよ.

(1)点$(0,\ -2)$からこの放物線に引いた$2$本の接線の傾きを求めよ.
(2)(1)で求めた$2$本の接線と放物線で囲まれた図形の面積を求めよ.
日本女子大学 私立 日本女子大学 2013年 第1問
$1$辺の長さが$a$の正四面体$\mathrm{OABC}$において,辺$\mathrm{OB}$の中点を$\mathrm{P}$とし,辺$\mathrm{OC}$を$2:1$に内分する点を$\mathrm{Q}$とする.

(1)線分$\mathrm{AP}$,線分$\mathrm{AQ}$,線分$\mathrm{PQ}$の長さを求めよ.
(2)$\cos \angle \mathrm{PAQ}$の値を求めよ.
(3)$\triangle \mathrm{PAQ}$の面積を求めよ.
日本女子大学 私立 日本女子大学 2013年 第3問
曲線$y=-(x-1)(x+1)^2$を$C$とし,曲線$C$が$y$軸と交わる点を$\mathrm{A}$,$x$軸と交わる点のうち接点でない方を$\mathrm{B}$とする.点$\mathrm{P}$は曲線$C$上にあって,点$\mathrm{A}$と点$\mathrm{B}$の間を動く点とし,その$x$座標を$t$とおく.また,原点を$\mathrm{O}$とおく.

(1)四角形$\mathrm{OBPA}$の面積を$t$の式で表せ.
(2)曲線$C$と線分$\mathrm{AP}$とで囲まれた図形の面積を$S_1$,曲線$C$と線分$\mathrm{PB}$とで囲まれた図形の面積を$S_2$とする.面積の和$S_1+S_2$を最小にする$t$の値を求めよ.
西南学院大学 私立 西南学院大学 2013年 第5問
直線$y=x$と放物線$C:y=x^2-x$で囲まれる領域の面積を$S$とする.以下の問に答えよ.

(1)直線$y=ax$(ただし$a>-1$)と$C$で囲まれる領域の面積が$\displaystyle \frac{S}{2}$となるとき,$a$の値を求めよ.
(2)直線$y=ax$(ただし$a>-1$)と$C$で囲まれる領域の面積を$\displaystyle \frac{S}{k}$とする.$a$が負となるような最小の自然数$k$を求めよ.
(3)原点を通る$9$本の直線が$S$を$10$等分するとき,それらの直線の傾きを大きい方から$a_1,\ a_2,\ \cdots,\ a_{9}$とする.このとき,$a_7$を求めよ.
京都産業大学 私立 京都産業大学 2013年 第3問
以下の$[ ]$にあてはまる式または数値を入れよ.

$a$を正の実数とし,$xy$平面上に放物線$C:y=ax^2$とその上の点$\mathrm{P}(p,\ ap^2)$とが与えられている.ただし,$p>0$とする.原点を$\mathrm{O}$とする.
(1)放物線$C$と$x$軸および直線$x=p$で囲まれた部分の面積を$S_1(p)$とすると,$S_1(p)=[ア]$である.
(2)放物線$C$の$\mathrm{P}$における接線$\ell_1$の方程式は$y=[イ]$である.
(3)$\mathrm{P}$を通り$\ell_1$に垂直な直線$\ell_2$の方程式は$y=[ウ]$であり,$\ell_2$と$x$軸との交点を$\mathrm{Q}$とすると,$\mathrm{Q}$の$x$座標は$[エ]$である.
(4)点$\mathrm{R}(0,\ 1)$とする.$\mathrm{OQ}$,$\mathrm{OR}$を$2$辺とする長方形の面積を$S_2(p)$とし,$f(p)=S_1(p)-S_2(p) (p>0)$とおく.関数$f(p)$が極値をもつような$a$の値の範囲は$[オ]$である.
(5)$\displaystyle a=\frac{1}{10}$のとき,$f(p)$の極値を求めて,さらに$f(p)$のグラフを描け.
西南学院大学 私立 西南学院大学 2013年 第5問
$\displaystyle y=-x^2+3x+\frac{3}{4}$で表されるグラフを$C_1$とし,$y=|x-1|+|x-2|$で表されるグラフを$C_2$とする.以下の問に答えよ.

(1)$C_1$と$C_2$の概形を同じ座標平面上に描け.
(2)不等式$\displaystyle -x^2+3x+\frac{3}{4}>|x-1|+|x-2|$を解け.
(3)$C_1$と$C_2$で囲まれる部分の面積を求めよ.
西南学院大学 私立 西南学院大学 2013年 第5問
以下の問に答えよ.

(1)$y=x^2-4x+2$で表されるグラフを$G$とする.$G$と直線$y=x-2$の共有点の座標を求めよ.また,$G$と直線$y=-x+2$の共有点の座標を求めよ.
(2)次の連立不等式の表す領域を図示せよ.
\[ \left\{ \begin{array}{l}
y \leqq 2 \\
y \geqq x^2-4x+2 \\
(x+y-2)(x-y-2) \geqq 0
\end{array} \right. \]
(3)$(2)$の表す領域の面積を求めよ.
京都産業大学 私立 京都産業大学 2013年 第3問
$xy$平面上の曲線$C_1:y=x \sin x$と,傾き$m$の直線$C_2:y=mx$について,次の問いに答えよ.

(1)点$(a,\ a \sin a)$における$C_1$の接線の方程式を求めよ.
(2)$C_1$と$C_2$が$0<x<\pi$の範囲で接する$m$の値を求めよ.
(3)$(2)$のとき,$C_1$を$0 \leqq x \leqq \pi$に制限した曲線と$C_2$とで囲まれた部分の面積を求めよ.
(4)$(3)$で得られた部分を,$x$軸のまわりに$1$回転して得られる立体の体積を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。