タグ「面積」の検索結果

129ページ目:全2409問中1281問~1290問を表示)
北海学園大学 私立 北海学園大学 2013年 第3問
正三角形$\mathrm{ABC}$において,辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$上にそれぞれ点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$があり,$\mathrm{AD}=\mathrm{BE}=\mathrm{CF}=t$,$\mathrm{BD}=\mathrm{CE}=\mathrm{AF}=1-t$が成り立っている.さらに直線$\mathrm{AE}$と$\mathrm{CD}$の交点を$\mathrm{P}$,直線$\mathrm{BF}$と$\mathrm{AE}$の交点を$\mathrm{Q}$,直線$\mathrm{CD}$と$\mathrm{BF}$の交点を$\mathrm{R}$とする.ただし,$0<t<1$とする.

(1)線分$\mathrm{FR}$の長さを$t$を用いて表せ.
(2)三角形$\mathrm{ABC}$の面積は三角形$\mathrm{CFR}$の面積の何倍かを$t$を用いて表せ.
(3)三角形$\mathrm{ABC}$の面積が三角形$\mathrm{PQR}$の面積の$2$倍となるとき,$t$の値をすべて求めよ.
南山大学 私立 南山大学 2013年 第2問
原点を$\mathrm{O}$とする座標空間に$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 3)$がある.

(1)$\triangle \mathrm{ABC}$の面積を求めよ.
(2)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の定める平面を$\alpha$とする.$\mathrm{O}$から$\alpha$に下ろした垂線と$\alpha$との交点を$\mathrm{H}$とするとき,
\[ \overrightarrow{\mathrm{AH}}=s \overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}} \]
を満たすような実数$s,\ t$の値を求めよ.また,$\mathrm{H}$の座標を求めよ.
(3)四面体$\mathrm{OABC}$に内接する球の半径$r$を求めよ.
南山大学 私立 南山大学 2013年 第1問
$[ ]$の中に答を入れよ.

(1)$x$の整式$x^3+3mx^2+2(m^2-1)x-4$が$(x+2)^2$で割り切れるとする.このとき,$m$の値は$m=[ア]$であり,商は$[イ]$である.

(2)行列$A=\left( \begin{array}{cc}
x+1 & 2 \\
-5 & y-2
\end{array} \right)$がある.$A^2=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$を満たすとき,$x$と$y$の値を求めると$(x,\ y)=[ウ]$である.また,$A$が逆行列をもたないような$2$つの正の整数$x$と$y$の値を求めると$(x,\ y)=[エ]$である.
(3)$a$は$1$ではない実数,$k$は$3$以上の整数とする.初項が$a$,第$2$項が$1$の等差数列があり,その第$k$項を$b$とする.$b$を$a$と$k$で表すと$b=[オ]$である.この$b$に対して,初項が$1$,第$2$項が$a$,第$3$項が$b$の数列が等比数列になるとき,$a$を$k$で表すと$a=[カ]$である.
(4)曲線$C:y=\log x$上の点$\mathrm{P}(2,\ \log 2)$から$x$軸に下ろした垂線と$x$軸との交点を$\mathrm{Q}$とする.$\mathrm{P}$における$C$の接線を$\ell$,$\mathrm{P}$を通り$\ell$と垂直な直線を$m$とし,$m$と$x$軸との交点を$\mathrm{R}$とする.このとき,$m$の方程式を求めると$y=[キ]$である.また,$\triangle \mathrm{PQR}$の面積$S$を求めると$S=[ク]$である.
(5)$3$つのサイコロを同時に投げるとき,出た目の最大値が$6$となる確率は$[ケ]$であり,出た目の最大値と最小値の組が$(6,\ 1)$となる確率は$[コ]$である.
南山大学 私立 南山大学 2013年 第2問
$xy$平面上に$3$つの放物線$C_1:y=x^2$,$C_2:y=bx^2 (0<b<1)$および$C_3$がある.$C_3$は$C_2$上の点$(1,\ b)$を頂点とし,点$(0,\ b-1)$を通り,上に凸である.また,$C_1$と$C_3$は,ただ$1$つの共有点$\mathrm{A}$を持ち,$\mathrm{A}$を通る共通の接線$\ell$を持つ.

(1)$b$の値と$C_3$の方程式を求めよ.
(2)$\mathrm{A}$の座標と$\ell$の方程式を求めよ.
(3)$C_1$,$\ell$および$y$軸で囲まれた部分の面積を$S$とし,$C_3$,$\ell$および$y$軸で囲まれた部分の面積を$T$とする.$S=T$が成り立つことを示せ.
南山大学 私立 南山大学 2013年 第2問
曲線$C:y=x^2-4x+7$上の点$\mathrm{P}(a,\ a^2-4a+7)$における$C$の接線を$\ell_1$とする.また,$C$と$y$軸および$\ell_1$で囲まれた図形の面積を$S$とする.ただし,$a>0$とする.

(1)$\ell_1$の方程式を$a$で表せ.
(2)$S$を$a$で表せ.
(3)$a=3$とする.正の$y$切片を持ち,$\ell_1$と直交する直線を$\ell_2$とする.$\ell_1$,$\ell_2$および$y$軸で囲まれた三角形の面積が$\displaystyle \frac{1}{2}S$であるとき,$\ell_2$の方程式を求めよ.
南山大学 私立 南山大学 2013年 第2問
座標平面上に放物線$\displaystyle D:y=\frac{1}{2}x^2+x+2$と$D$上の点$\mathrm{P}(-2,\ 2)$がある.また,$\mathrm{P}$における$D$の接線を$\ell$とする.

(1)$\ell$の方程式を求めよ.
(2)円$C$は,半径が$r$で中心が$(r,\ 2)$であり,直線$\ell$と接しているとする.$C$と$\ell$との接点$\mathrm{A}$の$x$座標を$a$とするとき,$\mathrm{A}$を通り$\ell$と垂直に交わる直線の方程式を$a$で表せ.また,その直線が$C$の中心を通ることを用いて$r$を$a$で表せ.
(3)$(2)$の$r$の値を求めよ.
(4)$(2)$の$C$の外側で$D$と$C$と$\ell$とで囲まれた部分の面積$S$を求めよ.
南山大学 私立 南山大学 2013年 第2問
放物線$C:y=x^2-4x$と,$C$上の点$(3,\ -3)$における接線を$y$軸方向に$a$だけ平行移動した直線$\ell$を考える.

(1)$\ell$の方程式を求めよ.
(2)$a=1$のとき,同一の座標平面に$C$と$\ell$を図示せよ.
(3)$x>0$において,$C$と$\ell$が異なる$2$点で交わるとき,$a$のとりうる値の範囲を求めよ.
(4)$(3)$のとき,$C$の下側で$y$軸と$C$と$\ell$とで囲まれた部分の面積$S$を求めよ.
甲南大学 私立 甲南大学 2013年 第2問
座標平面上に,$2$つの円$C_1:x^2+y^2=1$,$C_2:(x-2)^2+(y-1)^2=4$があり,$C_1$と$C_2$の共通接線を$n_1,\ n_2$(ただし$n_1$の傾きより$n_2$の傾きの方が大きい)とする.また,$C_1$と$C_2$の中心を結ぶ直線を$\ell$とし,$C_1$と$C_2$の$2$つの交点を結ぶ直線を$m$とする.このとき,以下の問いに答えよ.

(1)直線$\ell$の方程式,および$\ell$と$n_1$の交点の座標を求めよ.
(2)直線$n_1$と直線$\ell$とのなす角を$\displaystyle \alpha \left( \text{ただし} 0 \leqq \alpha \leqq \frac{\pi}{2} \right)$とし,$\tan \alpha$および$\tan 2\alpha$の値を求めよ.
(3)直線$n_2$の方程式を求めよ.
(4)直線$m$の方程式を求めよ.
(5)$3$つの直線$n_1,\ n_2,\ m$で囲まれた三角形の面積を求めよ.
甲南大学 私立 甲南大学 2013年 第3問
$\triangle \mathrm{OAB}$において,辺$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{P}$,辺$\mathrm{BO}$を$1:2$に内分する点を$\mathrm{Q}$,辺$\mathrm{OA}$を$1:2$に内分する点を$\mathrm{R}$とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とする.このとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{AQ}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\mathrm{AQ}$と$\mathrm{OP}$の交わる点を$\mathrm{S}$とするとき,$\overrightarrow{\mathrm{AS}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)$\mathrm{AQ}$と$\mathrm{BR}$の交わる点を$\mathrm{T}$とし,$\mathrm{BR}$と$\mathrm{OP}$の交わる点を$\mathrm{U}$とするとき,$\triangle \mathrm{STU}$と$\triangle \mathrm{OAB}$の面積の比の値$\displaystyle \frac{\triangle \mathrm{STU}}{\triangle \mathrm{OAB}}$を求めよ.
昭和大学 私立 昭和大学 2013年 第4問
次の各問に答えよ.

(1)関数$y=x(1-x^2)e^{x^2}$の極小値を求めよ.
(2)$(1)$の関数のグラフと$x$軸とで囲まれる部分の面積の総和を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。