タグ「面積」の検索結果

126ページ目:全2409問中1251問~1260問を表示)
東京海洋大学 国立 東京海洋大学 2013年 第4問
座標平面上に$2$点$\mathrm{A}(t,\ t)$,$\mathrm{B}(t-1,\ -t+1)$をとり,線分$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{P}$とする.

(1)$t$がすべての実数を動くとき,点$\mathrm{P}$の軌跡を求めよ.
(2)直線$\mathrm{AB}$の方程式を$t$を用いて表せ.
(3)$(2)$で求めた方程式を満たす実数$t$が存在するための$x,\ y$についての条件を求め,条件を満たす点$(x,\ y)$全体の領域$D$を座標平面内に図示せよ.
(4)$(1)$で求めた点$\mathrm{P}$の軌跡の方程式を$y=f(x)$とする.連立不等式
\[ y \geqq x,\quad y \geqq -x,\quad y \leqq 1,\quad y \geqq f(x) \]
の表す領域と領域$D$の共通部分の面積を求めよ.
東京海洋大学 国立 東京海洋大学 2013年 第5問
$f(x)=2 \sin x+\cos 2x (0 \leqq x \leqq 2\pi)$とする.

(1)関数$y=f(x)$の極値を求めてグラフの概形をかけ.ただし,凹凸は調べなくてよい.
(2)方程式$f(x)=0$の解を$\alpha,\ \beta (0 \leqq \alpha<\beta \leqq 2\pi)$とする.$\sin \alpha$,$\cos \alpha$,$\sin \beta$,$\cos \beta$の値を求めよ.
(3)$y=f(x)$のグラフと$x$軸で囲まれた図形で,第$4$象限に含まれる部分の面積を求めよ.
京都教育大学 国立 京都教育大学 2013年 第1問
$\triangle \mathrm{ABC}$において頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に向かい合う辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$で表し,$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の大きさを,それぞれ$A,\ B,\ C$で表すものとする.$\triangle \mathrm{ABC}$の面積を$S$とし,$\displaystyle s=\frac{a+b+c}{2}$とおくと
\[ S=\sqrt{s(s-a)(s-b)(s-c)} \]
が成立することを余弦定理と公式
\[ S=\frac{1}{2}bc \sin A \]
を用いて証明せよ.
京都教育大学 国立 京都教育大学 2013年 第6問
関数$f(x)$が次のように与えられているとする.
\[ f(x)=\frac{1}{4}(1-x^2)^2-\theta x \]
ただし$\theta$は実数とする.以下の問に答えよ.

(1)曲線$y=f(x)$上の点$\displaystyle \left( 0,\ \frac{1}{4} \right)$における接線の方程式を求めよ.
(2)曲線$y=f(x)$と$(1)$で求めた接線によって囲まれる図形の面積を求めよ.
(3)関数$f(x)$が極大値をもつときの$\theta$の範囲を求めよ.
島根大学 国立 島根大学 2013年 第2問
$x<1$に対して,$f(x)=|x| \log (1-x)$とおく.このとき,次の問いに答えよ.

(1)関数$y=f(x)$は$x=0$で微分可能かどうかを調べよ.
(2)関数$y=f(x)$のグラフと直線$y=-x$の交点を求めよ.
(3)不定積分$\displaystyle \int x \log (1-x) \, dx$を求めよ.
(4)$x \leqq 0$において関数$y=f(x)$のグラフと直線$y=-x$で囲まれた図形の面積$S$を求めよ.
島根大学 国立 島根大学 2013年 第2問
数列$\{a_n\},\ \{b_n\}$を,$\displaystyle a_1=1,\ b_1=0,\ a_{n+1}=\frac{1}{4}a_n-\frac{\sqrt{3}}{4}b_n,\ b_{n+1}=\frac{\sqrt{3}}{4}a_n+\frac{1}{4}b_n$によって定め,座標が$(a_n,\ b_n)$である点を$\mathrm{C}_n$とする.原点を$\mathrm{O}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OC}_n}$の大きさ$|\overrightarrow{\mathrm{OC}_n}|$を,$n$を用いて表せ.
(2)$\overrightarrow{\mathrm{OC}_n}$と$\overrightarrow{\mathrm{OC}_{n+1}}$のなす角を求めよ.
(3)$S_n$を$\triangle \mathrm{OC}_n \mathrm{C}_{n+1}$の面積とするとき,$\displaystyle S_n \leqq \frac{1}{2^{2013}}$をみたす最小の自然数$n$を求めよ.
和歌山大学 国立 和歌山大学 2013年 第4問
曲線$C:y=xe^{-x^2}$上の点$(t,\ te^{-t^2})$における接線を$\ell$とする.$t>1$の範囲で$\ell$と$x$軸の交点の$x$座標を最小にするような$t$を$t_0$とし,そのときの$\ell$を$\ell_0$とする.このとき,次の問いに答えよ.

(1)$t_0$を求めよ.
(2)$0<x<t_0$の範囲で$C$は上に凸であることを示せ.
(3)$C$と$\ell_0$と$y$軸で囲まれる部分の面積を求めよ.
鳥取大学 国立 鳥取大学 2013年 第3問
$a,\ b$を正の定数とする.曲線$y=e^{-ax}\sin bx \ (x \geqq 0)$と$x$軸とで囲まれた図形で$x$軸の下側にある部分の面積を,$y$軸に近い方から順に$S_1,\ S_2,\ S_3,\ \cdots$とするとき,無限級数$\displaystyle \sum_{n=1}^\infty S_n$を求めよ.
鳥取大学 国立 鳥取大学 2013年 第3問
$\displaystyle I=\int e^{-x}\sin x \, dx,\ J=\int e^{-x}\cos x \, dx$とするとき,次の問いに答えよ.

(1)次の関係式が成り立つことを証明せよ.
\[ I=J-e^{-x}\sin x,\quad J=-I-e^{-x}\cos x \]
(2)$I,\ J$を求めよ.
(3)曲線$y=e^{-x}\sin x \ (x \geqq 0)$と$x$軸とで囲まれた図形で$x$軸の下側にある部分の面積を,$y$軸に近い方から順に$S_1,\ S_2,\ S_3,\ \cdots$とするとき,無限級数$\displaystyle \sum_{n=1}^\infty S_n$を求めよ.
香川大学 国立 香川大学 2013年 第4問
$a>0$のとき,$2$つの放物線$y=x^2-2,\ y=-ax^2+ax-1$について,次の問に答えよ.

(1)$2$つの放物線の交点の座標を求めよ.
(2)$2$つの放物線で囲まれた図形の面積を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。