タグ「面積」の検索結果

124ページ目:全2409問中1231問~1240問を表示)
京都工芸繊維大学 国立 京都工芸繊維大学 2013年 第3問
$a$を正の定数とし,$m$を自然数とする.$xy$平面上の$2$曲線$C_1:y=ax^2 \ (x \geqq 0)$,$C_2:y=(\log x)^{m} \ (x \geqq 1)$および点$\mathrm{P}$は次の条件を満たしている.

$C_1$と$C_2$は$\mathrm{P}$を通り,$\mathrm{P}$における$C_1$の接線と$\mathrm{P}$における$C_2$の接線は一致する.
(1)$a$の値および$\mathrm{P}$の$x$座標を$m$を用いて表せ.
(2)関数$\displaystyle f(x)=\frac{(\log x)^m}{x^2} \ (x \geqq 1)$の最大値を求め,$x \geqq 1$において不等式$ax^2 \geqq (\log x)^m$が成り立つことを示せ.
(3)自然数$n$に対して,不定積分$\displaystyle \int (\log x)^n \, dx$を$I_n$とおく.$n \geqq 2$のとき,部分積分法により,$I_n$を$I_{n-1}$を用いて表せ.
(4)$m=2$のとき,$C_1,\ C_2$および$x$軸で囲まれた部分の面積を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2013年 第4問
$xy$平面上の曲線$\displaystyle C:y=\frac{1}{x} \ (x>0)$を考える.$0<p<q$のとき,$C$上の$2$点$\displaystyle \mathrm{P} \left( p,\ \frac{1}{p} \right)$,$\displaystyle \mathrm{Q} \left( q,\ \frac{1}{q} \right)$を通る直線と$C$で囲まれる図形の面積を$S$とし,その図形を$x$軸のまわりに$1$回転してできる回転体の体積を$V$とする.

(1)$\displaystyle r=\frac{q}{p}$とおくとき,$S$および$V$の値を$p,\ r$を用いて表せ.
(2)自然数$n$に対して,$p=3^{n-1}$,$q=3^{n}$のときの$V$の値を$V_n$とおく.無限級数$\displaystyle \sum_{n=1}^\infty V_n$の和を求めよ.
福井大学 国立 福井大学 2013年 第1問
関数$f(x)$を$f(x)=x \sin x$とおく.また,曲線$y=f(x)$上の点$(\alpha,\ f(\alpha))$における接線の方程式を$y=g(x)$とおく.$\alpha>0$のとき,以下の問いに答えよ.

(1)$g(x)$を$\alpha$を用いて表せ.
(2)直線$y=g(x)$が原点を通るような最小の$\alpha$を$\alpha_1$とし,$\alpha=\alpha_1$のときの$g(x)$を$h(x)$とおく.$\alpha_1$の値と$h(x)$を求めよ.
(3)$0 \leqq x \leqq \alpha_1$において$h(x) \geqq f(x)$であることを示せ.
(4)$0 \leqq x \leqq \alpha_1$において直線$y=h(x)$と曲線$y=f(x)$で囲まれてできる図形の面積を求めよ.
山口大学 国立 山口大学 2013年 第3問
$xy$平面において,曲線$\displaystyle y=\frac{x}{x^2+1}$と$\displaystyle y=\frac{x^2}{2}$の原点以外の交点を$\mathrm{P}$とする.また,この$2$つの曲線で囲まれた図形を$D$とする.このとき,次の問いに答えなさい.

(1)点$\mathrm{P}$の座標を求めなさい.
(2)$D$の面積を求めなさい.
(3)$D$を$x$軸のまわりに$1$回転してできる立体の体積を求めなさい.
福井大学 国立 福井大学 2013年 第4問
$\mathrm{O}$を原点とする$xy$平面上に$2$点$\mathrm{P}(\cos t,\ 0)$,$\mathrm{Q}(0,\ \sin t)$をとる.ここで$\displaystyle 0 \leqq t \leqq \frac{\pi}{4}$とする.直線$\mathrm{PQ}$に関して$\mathrm{O}$と対称な点を$\mathrm{R}$とするとき,以下の問いに答えよ.ただし,直線$\mathrm{PQ}$が原点$\mathrm{O}$を通るときは$\mathrm{R}$を$\mathrm{O}$と定める.

(1)点$\mathrm{R}$の座標が$(\sin 2t \sin t,\ \sin 2t \cos t)$で表されることを証明せよ.
(2)$t$が$\displaystyle 0 \leqq t \leqq \frac{\pi}{4}$の範囲を動くとき,点$\mathrm{R}$の描く曲線を$C$と表す.曲線$C$上で,$y$座標が最大となる点の座標を求めよ.
(3)曲線$C$と直線$y=x$で囲まれる図形の面積を求めよ.
福井大学 国立 福井大学 2013年 第3問
次の問いに答えよ.

(1)$m,\ n$を自然数とするとき,次の不定積分を計算せよ.
\[ \int \cos mx \cos nx \, dx \]
(2)$\mathrm{O}$を原点とする$xy$平面上に$2$点$\mathrm{P}(\cos t,\ 0)$,$\mathrm{Q}(0,\ \sin t)$をとる.ここで$\displaystyle 0 \leqq t \leqq \frac{\pi}{4}$とする.直線$\mathrm{PQ}$に関して$\mathrm{O}$と対称な点を$\mathrm{R}$とするとき,以下の問いに答えよ.ただし,直線$\mathrm{PQ}$が原点$\mathrm{O}$を通るときは$\mathrm{R}$を$\mathrm{O}$と定める.

(i) $\mathrm{R}$の座標を求めよ.
(ii) $t$が$\displaystyle 0 \leqq t \leqq \frac{\pi}{4}$の範囲を動くときに$\mathrm{R}$の描く曲線と,直線$y=x$により囲まれる図形の面積を求めよ.
島根大学 国立 島根大学 2013年 第4問
$x<1$に対して,$f(x)=|x| \log (1-x)$とおく.このとき,次の問いに答えよ.

(1)関数$y=f(x)$は$x=0$で微分可能かどうかを調べよ.
(2)関数$y=f(x)$のグラフと直線$y=-x$の交点を求めよ.
(3)不定積分$\displaystyle \int x \log (1-x) \, dx$を求めよ.
(4)$x \leqq 0$において関数$y=f(x)$のグラフと直線$y=-x$で囲まれた図形の面積$S$を求めよ.
宮崎大学 国立 宮崎大学 2013年 第5問
座標平面上に,半円$C:x^2+y^2=4$(ただし,$x>0$)と放物線$D:x^2-6y+3=0$がある.半円$C$上の点$\mathrm{P}(2 \cos \theta,\ 2 \sin \theta)$(ただし,$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$)における半円$C$の接線を$\ell$とするとき,次の各問に答えよ.

(1)半円$C$と放物線$D$との交点$\mathrm{Q}$の座標を求めよ.
(2)直線$\ell$が放物線$D$に点$\mathrm{R}$において接するとき,$\theta$の値と点$\mathrm{R}$の座標を求めよ.
(3)$(2)$のとき,半円$C$と放物線$D$および直線$\ell$によって囲まれる部分の面積を求めよ.
長崎大学 国立 長崎大学 2013年 第1問
円$C_1:x^2-4x+y^2=0$と直線$\displaystyle \ell:y=\frac{\sqrt{3}}{3}x$がある.次の問いに答えよ.

(1)円$C_1$と直線$\ell$の交点のうち,原点$\mathrm{O}$と異なるものを$\mathrm{A}$とする.点$\mathrm{A}$の座標を求めよ.さらに,原点$\mathrm{O}$を頂点とし,点$\mathrm{A}$を通る放物線$C_2$の方程式を$y=ax^2$とする.$a$の値を求めよ.
(2)直線$\ell$の傾きを$\tan \theta$と表す.そのときの$\theta$の値を求めよ.ただし,$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$とする.
(3)円$C_1$と直線$\ell$で囲まれた図形のうち,直線$\ell$の上側にある部分の面積$S_1$を求めよ.
(4)円$C_1$と放物線$C_2$で囲まれた図形のうち,放物線$C_2$の上側にある部分の面積$S_2$を求めよ.
(5)放物線$C_2$の接線で,直線$\ell$とのなす角が$\displaystyle \frac{\pi}{4}$であるものを考える.そのすべてについて,接点の$x$座標を求めよ.
九州工業大学 国立 九州工業大学 2013年 第1問
$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$の範囲において,曲線$C_1:y=\sin 2x$と曲線$C_2:y=\cos x$の交点の$x$座標を$a,\ b,\ c \ (a<b<c)$とする.以下の問いに答えよ.

(1)$a,\ b,\ c$の値を求めよ.
(2)交点$(b,\ \sin 2b)$における$2$つの曲線$C_1$と$C_2$のそれぞれの接線は垂直ではないことを示せ.
(3)$a \leqq x \leqq b$の範囲で$2$つの曲線$C_1,\ C_2$によって囲まれた部分の面積を$S_1$とし,$b \leqq x \leqq c$の範囲で$2$つの曲線$C_1,\ C_2$によって囲まれた部分の面積を$S_2$とするとき,$2$つの面積の比$S_1:S_2$を求めよ.
(4)曲線$C_1$の$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$の部分と$x$軸で囲まれた部分を,$x$軸の周りに$1$回転させてできる立体の体積$V$を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。