タグ「面積」の検索結果

120ページ目:全2409問中1191問~1200問を表示)
小樽商科大学 国立 小樽商科大学 2013年 第4問
正方形$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$が下図のように与えられている.正方形$\mathrm{A}_2 \mathrm{B}_2 \mathrm{C}_2 \mathrm{D}_2$,正方形$\mathrm{A}_3 \mathrm{B}_3 \mathrm{C}_3 \mathrm{D}_3$,$\cdots$,正方形$\mathrm{A}_n \mathrm{B}_n \mathrm{C}_n \mathrm{D}_n$,正方形$\mathrm{A}_{n+1} \mathrm{B}_{n+1} \mathrm{C}_{n+1} \mathrm{D}_{n+1}$,$\cdots$を順に考える.ただし,$\mathrm{A}_{n+1}$,$\mathrm{B}_{n+1}$,$\mathrm{C}_{n+1}$,$\mathrm{D}_{n+1}$はそれぞれ順に$\mathrm{A}_n \mathrm{B}_n$,$\mathrm{B}_n \mathrm{C}_n$,$\mathrm{C}_n \mathrm{D}_n$,$\mathrm{D}_n \mathrm{A}_n$の中点,$\mathrm{O}$は$\mathrm{A}_1 \mathrm{C}_1$の中点である.正方形$\mathrm{A}_n \mathrm{B}_n \mathrm{C}_n \mathrm{D}_n$の面積を$S_n$とする.その時,$\displaystyle \frac{S_n}{S_1}$が初めて$\displaystyle \frac{1}{100}$以下となる$n$の値とその時の$\angle \mathrm{A}_1 \mathrm{OA}_n$を求めよ.$\log_{10}2=0.301$とする.
(図は省略)
室蘭工業大学 国立 室蘭工業大学 2013年 第1問
$a,\ b$を定数とし,$a \neq 0$とする.関数$f(x)=ax^2-4x+b$は,条件
\[ x^2f^{\prime\prime}(x)-xf^\prime(x)+f(x)=x^2+8 \]
を満たすとする.

(1)$a,\ b$の値を求めよ.
(2)直線$\ell$が,放物線$y=x^2$の接線であり,かつ放物線$y=f(x)$の接線でもあるとき,$\ell$の方程式を求めよ.
(3)$2$つの放物線$y=x^2$と$y=f(x)$,および$(2)$で求めた接線$\ell$で囲まれた部分の面積を求めよ.
室蘭工業大学 国立 室蘭工業大学 2013年 第2問
$2$つの曲線
\[ y=\cos^2 x \ \left( -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2} \right) \quad \text{と} \quad y=\sin^2 x \ \left( -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2} \right) \]
を,それぞれ$C_1$と$C_2$とする.

(1)$C_1$と$C_2$の$2$つの交点の座標を求めよ.
(2)$C_1$と$C_2$で囲まれた部分$D$の面積を求めよ.
(3)$D$を$x$軸の周りに$1$回転させてできる立体の体積を求めよ.
帯広畜産大学 国立 帯広畜産大学 2013年 第2問
関数$\displaystyle f(x)=\frac{1}{2}x^3+ax^2+bx+c$で定義される曲線$y=f(x)$は,$3$点$(0,\ 0)$,$(2,\ 0)$,$(-2,\ 0)$を通る.また,曲線$y=f(x)$を$x$軸方向に$1$だけ移動した曲線を$y=g(x)$とする.ただし,$a,\ b,\ c$は実数とする.次の各問に答えよ.

(1)$a,\ b,\ c$の値を求めなさい.
(2)関数$y=f(x)$の増減表を作り,そのグラフの概形を図示しなさい.
(3)曲線$y=f(x)$と円$x^2+y^2=4$のすべての交点を求めなさい.
(4)連立不等式
\[ \left\{ \begin{array}{l}
x^2+y^2 \leqq 4 \\
y \geqq f(x) \\
y \geqq g(x)
\end{array} \right. \]
で示される領域を図示し,この領域の面積を求めなさい.
佐賀大学 国立 佐賀大学 2013年 第4問
関数$f(x)=xe^{-2x}$に関して次の問に答えよ.ただし,$e$は自然対数の底である.

(1)曲線$y=f(x)$の概形をかけ.必要ならば,$\displaystyle \lim_{x \to \infty}xe^{-2x}=0$を使ってよい.
(2)曲線$y=f(x)$の接線のうちで傾きが最小となるものを$\ell$とする.その接線$\ell$の方程式と接点$(a,\ f(a))$を求めよ.
(3)$x<a$において,接線$\ell$は曲線$y=f(x)$より常に上側にあることを証明せよ.ただし,$a$は(2)で求めたものとする.
(4)曲線$y=f(x)$,接線$\ell$,および$y$軸で囲まれた図形の面積$S$を求めよ.
茨城大学 国立 茨城大学 2013年 第3問
平面上に$\triangle \mathrm{OAB}$があり,その面積は$S$である.辺$\mathrm{AB}$を$t:1-t \ (0<t<1)$に内分する点を$\mathrm{M}$,線分$\mathrm{OM}$を$3:1$に内分する点を$\mathrm{P}$,$2$点$\mathrm{A}$,$\mathrm{P}$を通る直線と辺$\mathrm{OB}$との交点を$\mathrm{Q}$とする.また,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.次の各問に答えよ.

(1)$\overrightarrow{\mathrm{AM}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\triangle \mathrm{OAQ}$の面積が$\displaystyle \frac{1}{10}S$のとき$t$の値を求めよ.
茨城大学 国立 茨城大学 2013年 第3問
平面上に$\triangle \mathrm{OAB}$があり,その面積は$S$である.辺$\mathrm{AB}$を$t:1-t \ (0<t<1)$に内分する点を$\mathrm{M}$,線分$\mathrm{OM}$を$3:1$に内分する点を$\mathrm{P}$,$2$点$\mathrm{A}$,$\mathrm{P}$を通る直線と辺$\mathrm{OB}$との交点を$\mathrm{Q}$とする.また,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.以下の各問に答えよ.

(1)$\overrightarrow{\mathrm{OP}}$を$t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\triangle \mathrm{OAQ}$の面積が$\displaystyle \frac{1}{10}S$のとき,$t$の値を求めよ.
茨城大学 国立 茨城大学 2013年 第4問
連立不等式
\[ 0 \leqq x \leqq \frac{\pi}{2},\quad -\cos x \leqq y \leqq \sin 2x \]
の表す領域を$D$とする.以下の各問に答えよ.

(1)領域$D$を図示せよ.
(2)領域$D$の面積を求めよ.
(3)領域$D$を$x$軸のまわりに$1$回転したときにできる立体の体積を求めよ.
茨城大学 国立 茨城大学 2013年 第1問
原点を$\mathrm{O}$とする座標平面上を運動する点$\mathrm{P}(x,\ y)$が
\[ x=\sin t,\quad y=\sin 2t \quad \left( 0 \leqq t \leqq \frac{\pi}{2} \right) \]
で表されるとき,点$\mathrm{P}$の描く曲線を$C$とする.($C$は右図のように \\
なっている.)以下の各問に答えよ.
\img{85_2188_2013_1}{40}


(1)曲線$C$と$x$軸が囲む図形の面積を求めよ.
(2)$\displaystyle 0<t<\frac{\pi}{2}$のとき,点$\mathrm{P}$における$C$の接線$\ell$の方程式を求めよ.
(3)$\displaystyle 0<t<\frac{\pi}{2}$のとき,(2)の接線$\ell$の傾きが負になる$t$の範囲を求めよ.
(4)$t$が(3)で求めた範囲にあるとき,$\ell$と$x$軸,$y$軸との交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とし,三角形$\mathrm{OPQ}$と三角形$\mathrm{OPR}$の面積をそれぞれ$S$と$T$とする.$c=\cos t$として,$S,\ T$をそれぞれ$c$を用いて表せ.
(5)(4)の$S$と$T$について$S=T$が成り立つとき,直線$\mathrm{OP}$の方程式を求めよ.
奈良教育大学 国立 奈良教育大学 2013年 第4問
関数$f(x)$を
\[ f(x)=2 \sin \left( \frac{1}{2} \left( x+\frac{\pi}{3} \right) \right) \quad (0 \leqq x \leqq 2\pi) \]
とする.このとき,次の設問に答えよ.

(1)曲線$y=f(x)$と$y$軸との交点$\mathrm{P}$の座標を求めよ.
(2)曲線$y=f(x)$と$x$軸との交点$\mathrm{Q}$の座標を求めよ.
(3)曲線$y=f(x)$のグラフを描け.
(4)$\mathrm{P}$と$\mathrm{Q}$を結んだ直線を$\ell$とする.曲線$y=f(x)$と直線$\ell$で囲まれた領域の面積を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。