タグ「面積」の検索結果

117ページ目:全2409問中1161問~1170問を表示)
富山大学 国立 富山大学 2013年 第3問
$2$つの曲線$C_1:y=|x^2-1|$,$C_2:y=m(x+1)^2 \ (0<m<1)$を考える.このとき,次の問いに答えよ.

(1)$x>0$の範囲における$C_1$と$C_2$の$2$つの交点の$x$座標を$\alpha,\ \beta \ (\alpha<\beta)$とする.$\alpha,\ \beta$を$m$を用いて表せ.
(2)$C_1$と$C_2$で囲まれた図形のうち,$x \leqq \alpha$を満たす部分の面積を$S_1$,$x \geqq \alpha$を満たす部分の面積を$S_2$とおく.$S_1,\ S_2$を,$m$を用いて表せ.
(3)$S_1=S_2$のとき$m$の値を求めよ.
愛知教育大学 国立 愛知教育大学 2013年 第4問
曲線$y=x^2$を$C$とする.$C$上の点$\mathrm{A}(\alpha,\ \alpha^2) \ (\alpha<0)$における曲線$C$の接線を$\ell$とする.また,この接線$\ell$上の点$\mathrm{P}$から,曲線$C$に$\ell$とは異なる接線$m$をひく.ただし,点$\mathrm{P}$の$x$座標は$p$とし,$p>\alpha$とする.このとき,以下の問いに答えよ.

(1)接線$m$の曲線$C$との接点$\mathrm{B}$の座標を求めよ.
(2)点$\mathrm{A}$と点$\mathrm{B}$を通る直線が,直線$\ell$と垂直となるとき,点$\mathrm{P}$の座標を求めよ.
(3)点$\mathrm{P}$を(2)で求めたものとする.このとき,点$\mathrm{P}$を通り,$\triangle \mathrm{ABP}$の面積を$2$等分する直線の方程式を求めよ.
愛知教育大学 国立 愛知教育大学 2013年 第5問
同一直線上にない$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$がある.線分$\mathrm{OB}$を$3:2$に内分する点を$\mathrm{C}$,線分$\mathrm{AB}$を$s:(1-s) \ (0<s<1)$に内分する点を$\mathrm{D}$とし,線分$\mathrm{OD}$と線分$\mathrm{AC}$の交点を$\mathrm{E}$とする.以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおくとき,$\overrightarrow{\mathrm{OE}}$を$\overrightarrow{a}$,$\overrightarrow{b}$と$s$を用いて表せ.
(2)$\triangle \mathrm{OAE}$と$\triangle \mathrm{OCE}$の面積が等しくなるような$s$の値を求めよ.
愛知教育大学 国立 愛知教育大学 2013年 第6問
座標平面上の円$C:x^2+y^2=1$と点$\mathrm{A}(-1,\ 0)$に対し,点$\mathrm{A}$を通る傾き$m \ (m>0)$の直線と円$C$との交点で,点$\mathrm{A}$とは異なる点を$\mathrm{P}$とする.また,点$\mathrm{P}$から$x$軸に下した垂線を$\mathrm{PQ}$とする.以下の問いに答えよ.

(1)点$\mathrm{P}$の座標を$m$を用いて表せ.
(2)$\triangle \mathrm{APQ}$の面積を最大とする$m$の値を求めよ.
山梨大学 国立 山梨大学 2013年 第2問
関数$f(x)=x^3-3a^2x-2a^2$を考える.ただし,$a>1$とする.

(1)関数$f(x)$の極大値と極小値を求めよ.
(2)定数$k \ (k<0)$に対して,方程式$f(x)=k$が相異なる$2$つだけの実数解$x_1,\ x_2$をもつとする.このとき,$k,\ x_1,\ x_2$の値をそれぞれ求めよ.ただし,$x_1<x_2$とする.
(3)$x_1,\ x_2$を(2)で求めた値とするとき,$\mathrm{P}(x_1,\ f(x_1))$,$\mathrm{Q}(x_2,\ f(x_2))$,原点の$3$点を通る放物線を求めよ.
(4)$k$が(2)で求めた値をとるとき,(3)で求めた放物線と直線$y=k$で囲まれた図形の面積を求めよ.
山梨大学 国立 山梨大学 2013年 第3問
$s,\ t,\ u$を正の実数とする.点$\mathrm{O}$を内部に含む$\triangle \mathrm{ABC}$について,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とすると,$s \overrightarrow{a}+t \overrightarrow{b}+u \overrightarrow{c}=\overrightarrow{\mathrm{0}}$が成り立っている.直線$\mathrm{CO}$と線分$\mathrm{AB}$の交点を$\mathrm{D}$とし,$\triangle \mathrm{BCO}$の面積を$S_A$,$\triangle \mathrm{CAO}$の面積を$S_B$,$\triangle \mathrm{ABO}$の面積を$S_C$とする.

(1)面積の比$S_A:S_B$は,線分の長さの比$\mathrm{BD}:\mathrm{AD}$に等しいことを示せ.
(2)比$\mathrm{BD}:\mathrm{AD}$を$s,\ t,\ u$を用いて表せ.
(3)比$S_A:S_B:S_C$を$s,\ t,\ u$を用いて表せ.
山梨大学 国立 山梨大学 2013年 第3問
曲線$C$は媒介変数$\displaystyle t \ \left( 0 \leqq t \leqq \frac{\pi}{2} \right)$によって,$\displaystyle x=\sqrt{\cos t}\cos \frac{t}{2}$,$\displaystyle y=\sqrt{\cos t}\sin \frac{t}{2}$と表される.

(1)$\displaystyle 0<t<\frac{\pi}{2}$において,$\displaystyle \frac{dx}{dt}$および$\displaystyle \frac{dy}{dt}$を求めよ.
(2)$x,\ y$の$t$に関する増減を調べ,曲線$C$の概形をかけ.
(3)曲線$C$と$x$軸で囲まれた図形の面積$S$を求めよ.
浜松医科大学 国立 浜松医科大学 2013年 第1問
関数$\displaystyle f(x)=\log x+\frac{1}{x}$と曲線$C:y=f(x) \ (x>0)$について,以下の問いに答えよ.なお,必要ならば$\displaystyle \lim_{x \to \infty}\frac{\log x}{x}=0$を用いてもよい.

(1)$f(x)$の導関数$f^\prime(x)$と不定積分$\displaystyle \int f(x) \, dx$をそれぞれ求めよ.
(2)曲線$C$の変曲点を求めよ.
以下$a$は$1$より大きい実数とし,点$(a,\ f(a))$における$C$の接線を$\ell(a)$とする.
(3)接線$\ell(a)$の方程式を求めよ.また,$a \neq 2$のとき,曲線$C$と接線$\ell(a)$は$2$個の共有点(接点と交点)をもつことを示せ.
(4)$a=2$とする.曲線$C$,接線$\ell(2)$と$2$直線$x=1,\ x=4$で囲まれた図形の面積を求めよ.
弘前大学 国立 弘前大学 2013年 第3問
$2$曲線$C_1:x^2+y^2=1$と$\displaystyle C_2:y=-\frac{\sqrt{3}}{3}(x-3)(x-\beta)$を考える.ただし,$\beta>3$とする.また,$C_1$上の点$\displaystyle \left( \frac{1}{2},\ -\frac{\sqrt{3}}{2} \right)$を通る$C_1$の接線$\ell$が$C_2$にも接しているとする.次の問いに答えよ.

(1)$\ell$と$C_2$の接点の座標および$\beta$の値を求めよ.
(2)$C_1$と$\ell$および$x$軸で囲まれた部分を$S_1$とし,$C_2$と$\ell$および$x$軸で囲まれた部分を$S_2$とする.このとき,$S_1$と$S_2$の面積をそれぞれ求めよ.
弘前大学 国立 弘前大学 2013年 第2問
曲線$\displaystyle y=e^x+\frac{6}{e^x+1}$と直線$y=4$で囲まれた部分の面積を求めよ.ただし,$e$は自然対数の底である.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。