タグ「面積」の検索結果

114ページ目:全2409問中1131問~1140問を表示)
信州大学 国立 信州大学 2013年 第4問
放物線$y=(x-1)^2+q \ (q>0)$のグラフに,原点$\mathrm{O}$から引いた2本の接線が互いに垂直に交わっているとする.このとき,次の問に答えよ.

(1)$q$の値を求めよ.
(2)2本の接線と放物線とで囲まれる図形の面積を$S_1$とする.また,2本の接線と放物線との接点を点$\mathrm{A}$,$\mathrm{B}$とし,$\triangle \mathrm{OAB}$の面積を$S_2$とする.このとき,$\displaystyle \frac{S_2}{S_1}$の値を求めよ.
信州大学 国立 信州大学 2013年 第3問
$0<t<1$とする.$xy$平面上の曲線$\displaystyle C_1:y=t \cos x \ \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と曲線$y=2 \sin x \ (0 \leqq x \leqq \pi)$について,次の問いに答えよ.

(1)2曲線$C_1,\ C_2$の交点の$x$座標を$\alpha$とするとき,$\sin \alpha$と$\cos \alpha$を$t$を用いて表せ.
(2)2曲線$C_1,\ C_2$と$y$軸で囲まれた図形の面積を$S(t)$とする.また,2曲線$C_1,\ C_2$と,$x$軸上の2点$\displaystyle \left( \frac{\pi}{2},\ 0 \right)$,$(\pi,\ 0)$を結ぶ線分で囲まれた図形の面積を$T(t)$とする.このとき,$S(t)$と$T(t)$を求めよ.
(3)極限値$\displaystyle \lim_{t \to +0}\frac{t^2T(t)}{S(t)}$を求めよ.
金沢大学 国立 金沢大学 2013年 第1問
正の実数$a,\ b,\ c$に対して,$\mathrm{O}$を原点とする座標空間に3点$\mathrm{A}(a,\ 0,\ 0)$,$\mathrm{B}(0,\ b,\ 0)$,$\mathrm{C}(0,\ 0,\ c)$がある.$\mathrm{AC}=2,\ \mathrm{BC}=3$かつ$\triangle \mathrm{ABC}$の面積が$\displaystyle \frac{3 \sqrt{3}}{2}$となるとき,次の問いに答えよ.

(1)$\sin \angle \mathrm{ACB}$の値を求めよ.また,線分$\mathrm{AB}$の長さを求めよ.
(2)$a,\ b,\ c$の値を求めよ.
(3)四面体$\mathrm{OABC}$の体積を求めよ.また,原点$\mathrm{O}$から$\triangle \mathrm{ABC}$に下ろした垂線の長さを求めよ.
金沢大学 国立 金沢大学 2013年 第3問
$a>0$とする.$x \geqq 0$における関数$f(x)=e^{\sqrt{ax}}$と曲線$C:y=f(x)$について,次の問いに答えよ.

(1)$C$上の点$\displaystyle \mathrm{P} \left( \frac{1}{a},\ f \left( \frac{1}{a} \right) \right)$における接線$\ell$の方程式を求めよ.また,$\mathrm{P}$を通り$\ell$に直交する直線$m$の方程式を求めよ.
(2)定積分$\displaystyle \int_0^{\frac{1}{a}}f(x) \, dx$を$t=\sqrt{ax}$とおくことにより求めよ.
(3)曲線$C$,直線$y=1$および直線$m$で囲まれた図形の面積$S(a)$を求めよ.また,$a>0$における$S(a)$の最小値とそれを与える$a$の値を求めよ.
神戸大学 国立 神戸大学 2013年 第2問
$p,\ r$を$-r<p<r$をみたす実数とする.$4$点$\mathrm{P}(p,\ p^2)$,$\mathrm{Q}(r,\ p^2)$,$\mathrm{R}(r,\ r^2)$,$\mathrm{S}(p,\ r^2)$に対し,線分$\mathrm{PR}$の長さは$1$であるとする.このとき,長方形$\mathrm{PQRS}$の面積の最大値と,そのときの$\mathrm{P},\ \mathrm{R}$の$x$座標をそれぞれ求めよ.
神戸大学 国立 神戸大学 2013年 第3問
$c$を$0<c<1$をみたす実数とする.$f(x)$を$2$次以下の多項式とし,曲線$y=f(x)$が$3$点$(0,\ 0)$,$(c,\ c^3-2c)$,$(1,\ -1)$を通るとする.次の問いに答えよ.

(1)$f(x)$を求めよ.
(2)曲線$y=f(x)$と曲線$y=x^3-2x$で囲まれた部分の面積$S$を$c$を用いて表せ.
(3)$(2)$で求めた$S$を最小にするような$c$の値を求めよ.
九州大学 国立 九州大学 2013年 第1問
$a>1$とし,$2$つの曲線
\[ \begin{array}{lll}
y=\sqrt{x} & & (x \geqq 0), \\
\displaystyle y=\frac{a^3}{x} & & (x>0)
\end{array} \]
を順に$C_1,\ C_2$とする.また,$C_1$と$C_2$の交点$\mathrm{P}$における$C_1$の接線を$\ell_1$とする.以下の問いに答えよ.

(1)曲線$C_1$と$y$軸および直線$\ell_1$で囲まれた部分の面積を$a$を用いて表せ.
(2)点$\mathrm{P}$における$C_2$の接線と直線$\ell_1$のなす角を$\theta(a)$とする$\displaystyle \left( 0<\theta(a)<\frac{\pi}{2} \right)$.このとき,$\displaystyle \lim_{a \to \infty}a \sin \theta(a)$を求めよ.
九州大学 国立 九州大学 2013年 第4問
座標平面上の円$(x-1)^2+(y-1)^2=2$を$C$とする.以下の問いに答えよ.

(1)直線$y=x-2$は円$C$に接することを示せ.また,接点の座標も求めよ.
(2)円$C$と放物線$\displaystyle y=\frac{1}{4}x^2-1$の共有点の座標をすべて求めよ.
(3)不等式$\displaystyle y \geqq \frac{1}{4}x^2-1$の表す領域を$D$とする.また,不等式$|x|+|y| \leqq 2$の表す領域を$A$とし,不等式$(|x|-1)^2+(y-1)^2 \leqq 2$の表す領域を$B$とする.そして,和集合$A \cup B$,すなわち領域$A$と領域$B$を合わせた領域を$E$とする.このとき,領域$D$と領域$E$の共通部分$D \cap E$を図示し,さらに,その面積を求めよ.
熊本大学 国立 熊本大学 2013年 第2問
$\mathrm{O}$を原点とする空間内の$2$点$\mathrm{A}(-1,\ 1,\ 1)$,$\mathrm{B}(2,\ 1,\ -2)$に対して,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OP}} \geqq 0$かつ$\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OP}} \geqq 0$を満たす平面$\mathrm{OAB}$上の点$\mathrm{P}$からなる領域を$D$とする.以下の問いに答えよ.

(1)実数$k$に対して,$\overrightarrow{\mathrm{OQ}}=k \overrightarrow{\mathrm{OA}}+(1-k) \overrightarrow{\mathrm{OB}}$によって定まる点$\mathrm{Q}$が領域$D$に含まれるとき,$k$の値の範囲を求めよ.
(2)$1 \leqq s+t \leqq 2$を満たす実数$s,\ t$に対して,$\overrightarrow{\mathrm{OR}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$によって定まる点$\mathrm{R}$からなる領域を$E$とする.このとき,領域$D$と$E$の共通部分の面積を求めよ.
熊本大学 国立 熊本大学 2013年 第4問
$xy$平面上で,点$(1,\ 0)$までの距離と$y$軸までの距離の和が$2$である点の軌跡を$C$とする.以下の問いに答えよ.

(1)$C$で囲まれた部分の面積を求めよ.
(2)$a$を正の数とする.円$x^2+y^2=a$と$C$の交点の個数が,$a$の値によってどのように変わるかを調べよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。