タグ「面積」の検索結果

107ページ目:全2409問中1061問~1070問を表示)
大阪市立大学 公立 大阪市立大学 2014年 第2問
$a>0$,$b>0$とし,座標平面上の楕円$\displaystyle K:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$上の$2$点
\[ \mathrm{A}(a \cos \theta,\ b \sin \theta),\qquad \mathrm{B} \left( a \cos \left( \theta+\frac{\pi}{2} \right),\ b \sin \left( \theta+\frac{\pi}{2} \right) \right) \]
のそれぞれにおける$K$の接線を$\ell$,$m$とする.ただし,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{4}$とする.$2$直線$\ell$と$m$の交点を$\mathrm{C}(c,\ d)$とし,さらに$2$点$\displaystyle \mathrm{D} \left( a \cos \left( \theta+\frac{\pi}{2} \right),\ 0 \right)$,$\mathrm{E}(c,\ 0)$をとる.台形$\mathrm{CBDE}$の面積を$S$とする.次の問いに答えよ.

(1)$c$および$d$を$a,\ b,\ \theta$を用いて表せ.
(2)$S$を$a,\ b,\ \theta$を用いて表せ.
(3)$\theta$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{4}$の範囲を動くときの$S$の最大値,および,$S$が最大値をとるときの$m$の傾きを$a,\ b$を用いて表せ.
首都大学東京 公立 首都大学東京 2014年 第3問
$f(x)=xe^{-x}$,$t>1$とするとき,以下の問いに答えなさい.

(1)曲線$y=f(x)$と直線$\displaystyle y=\frac{x}{t}$のすべての交点の座標を求めなさい.
(2)$(1)$のような$y=f(x)$と$\displaystyle y=\frac{x}{t}$で囲まれる部分の面積$S(t)$を求めなさい.
(3)$t$が$1$より大きい実数全体を動くとき,関数$\displaystyle g(t)=\frac{t}{\log t}(1-S(t))$の最小値を求めなさい.
首都大学東京 公立 首都大学東京 2014年 第2問
原点を$\mathrm{O}$とする座標平面において,点$\mathrm{A}$の座標を$(2,\ 0)$とし,点$\mathrm{P}$は直線$y=\sqrt{3}x$上にあるものとする.このとき,以下の問いに答えなさい.

(1)三角形$\mathrm{AOP}$の外接円の半径が$5$となるときの点$\mathrm{P}$の座標を求めなさい.
(2)$\angle \mathrm{P}={45}^\circ$となるときの点$\mathrm{P}$の座標を求めなさい.
(3)$\angle \mathrm{A}={45}^\circ$となるときの三角形$\mathrm{AOP}$の面積を求めなさい.
首都大学東京 公立 首都大学東京 2014年 第3問
$f(x)=x(x-2)-6 |x|$とするとき,以下の問いに答えなさい.

(1)$f(x)$の最小値を求めなさい.
(2)曲線$y=f(x)$上の点$\mathrm{A}(t,\ f(t)) (t>0)$を通る接線が曲線$y=f(x)$の$x<0$の部分と点$\mathrm{B}$で接しているとき,点$\mathrm{A}$,$\mathrm{B}$の座標と接線の方程式を求めなさい.
(3)$(2)$において曲線$y=f(x)$と線分$\mathrm{AB}$で囲まれる部分の面積を求めなさい.
首都大学東京 公立 首都大学東京 2014年 第4問
大小二つのさいころを同時にふって,出た目の値をそれぞれ$a,\ b$とする.領域
\[ y \geqq -\frac{x}{2}+a \quad \text{かつ} \quad (x-b)^2+(y-b)^2 \leqq b^2 \]
の面積を$S$とする.ただし,空集合の面積は$0$とする.以下の問いに答えなさい.

(1)$\displaystyle S=\frac{\pi b^2}{2}$となる確率$p_1$を求めなさい.
(2)$S=0$となる確率$p_2$を求めなさい.
岡山県立大学 公立 岡山県立大学 2014年 第1問
$\mathrm{AB}=2$,$\mathrm{BC}=\sqrt{5}$,$\mathrm{CA}=1$である三角形$\mathrm{ABC}$において,点$\mathrm{A}$から直線$\mathrm{BC}$に下ろした垂線の足を$\mathrm{H}$,辺$\mathrm{AC}$の中点を$\mathrm{M}$,直線$\mathrm{AH}$と直線$\mathrm{BM}$の交点を$\mathrm{P}$とする.次の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$の値を求めよ.
(2)$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$で表せ.
(3)三角形$\mathrm{ABP}$の面積を求めよ.
岡山県立大学 公立 岡山県立大学 2014年 第4問
$\displaystyle f(x)=\int_x^{x+1} t \cdot |t| \, dt$とする.以下の問いに答えよ.

(1)$f(0)$と$f(-1)$を求めよ.
(2)$f^\prime(x)$を求めよ.
(3)$f(x)$を求めよ.
(4)座標平面において曲線$y=f(x)$と直線$y=f(-1)$で囲まれる部分のうち,$-2 \leqq x \leqq -1$の範囲の面積を$S_1$,$-1 \leqq x \leqq 0$の範囲の面積を$S_2$,$0 \leqq x \leqq 1$の範囲の面積を$S_3$とする.$S_1$,$S_2$,$S_3$を求めよ.
大阪府立大学 公立 大阪府立大学 2014年 第2問
$\mathrm{OA}=\mathrm{OB}=1$をみたす二等辺三角形$\mathrm{OAB}$において,辺$\mathrm{AB}$を$1:3$に内分する点を$\mathrm{P}$,辺$\mathrm{OB}$の中点を$\mathrm{Q}$,直線$\mathrm{OP}$と直線$\mathrm{AQ}$の交点を$\mathrm{R}$,直線$\mathrm{BR}$と辺$\mathrm{OA}$の交点を$\mathrm{S}$とし,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とおく.このとき,直線$\mathrm{BS}$は辺$\mathrm{OA}$と直交しているとする.

(1)ベクトル$\overrightarrow{\mathrm{OR}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表せ.
(2)ベクトル$\overrightarrow{\mathrm{BS}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表せ.
(3)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(4)三角形$\mathrm{OAB}$の面積を求めよ.
大阪府立大学 公立 大阪府立大学 2014年 第4問
$a$は正の定数とし,曲線$C_1:y=ax^2 (0 \leqq x \leqq 1)$と$\displaystyle C_2:y=\frac{1}{a}(x-1)^2 (0 \leqq x \leqq 1)$および$x$軸で囲まれる部分の面積を$S(a)$とする.

(1)$C_1$と$C_2$の交点の$x$座標を求めよ.
(2)$S(a)$を求めよ.
(3)$a$がすべての正の実数を動くとき,$S(a)$の最大値とそれを与える$a$の値を求めよ.
大阪府立大学 公立 大阪府立大学 2014年 第2問
座標空間内に$3$点$\mathrm{A}(1,\ 1,\ 2)$,$\mathrm{B}(3,\ 5,\ 7)$,$\mathrm{C}(4,\ 4,\ 5)$がある.また,$s,\ t$は実数であるとして,点$\mathrm{P}(s,\ t,\ 4)$を考える.このとき,以下の問いに答えよ.

(1)点$\mathrm{P}$が$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面上にあるための$s,\ t$の関係式を求めよ.
(2)点$\mathrm{P}$が直線$\mathrm{AB}$上にあるときの$s,\ t$の値を求めよ.
(3)点$\mathrm{P}$が$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面上を動くとき,その軌跡により三角形$\mathrm{ABC}$は二つの部分に分けられる.この二つの部分の面積の比の値$r$を求めよ.ただし,$r \geqq 1$とする.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。