タグ「面積」の検索結果

103ページ目:全2409問中1021問~1030問を表示)
武庫川女子大学 私立 武庫川女子大学 2014年 第3問
次の空欄$[$39$]$~$[$60$]$にあてはまる数字を入れよ.ただし,空欄$[$41$]$,$[$44$]$,$[$47$]$,$[$51$]$には$+$または$-$の記号が入る.

(1)$\displaystyle \lim_{x \to 2} \frac{5x^2+5x-30}{x-2}=[$39$][$40$]$である.
(2)$2$次関数$y=f(x)$のグラフは原点と点$\displaystyle \left( 1,\ \frac{17}{4} \right)$を通る.また,$x=2$において傾き$8$の接線をもつ.このとき,$f(x)$の最小値は$\displaystyle [$41$] \frac{[$42$]}{[$43$]}$である.
(3)$2$次関数$f(x)=ax^2+bx+c$(ただし,$a,\ b,\ c$は定数)がある.すべての実数$x$について$3f(x)+4f^\prime(x)=-2x^2+5x+7$が常に成立するとき,
\[ a=[$44$] \frac{[$45$]}{[$46$]},\quad b=[$47$] \frac{[$48$][$49$]}{[$50$]},\quad c=[$51$] \frac{[$52$][$53$]}{[$54$][$55$]} \]
である.
(4)$2$つの関数$\displaystyle f(x)=x-\frac{3}{a}$および$\displaystyle g(x)=ax^2+7x+\frac{6}{a}$がある(ただし,$a$は正の定数).$xy$平面上の$4$つのグラフ$y=f(x)$,$y=g(x)$,$x=0$および$x=1$で囲まれる図形の面積は$a=[$56$] \sqrt{[$57$]}$のとき最小値$[$58$]+[$59$] \sqrt{[$60$]}$をとる.
武庫川女子大学 私立 武庫川女子大学 2014年 第1問
次の空欄$[$1$]$~$[$18$]$にあてはまる数字を入れよ.

(1)$\displaystyle \sqrt{\frac{31 \sqrt{3}+31 \sqrt{5}-10 \sqrt{42}-6 \sqrt{70}}{\sqrt{5}+\sqrt{3}}}$

$=\sqrt{[$1$][$2$]-[$3$] \sqrt{[$4$][$5$][$6$]}}$

$=\sqrt{[$7$][$8$]}-\sqrt{[$9$][$10$]}$

(2)$\mathrm{AB}=10$,$\mathrm{BC}=16$,$\angle \mathrm{ABC}={60}^\circ$の三角形$\mathrm{ABC}$を底面とする三角柱の内部に球がある.球は,三角柱の$5$つの面すべてに接している.このとき,

(i) 底面の三角形の面積は$[$11$][$12$] \sqrt{[$13$]}$である.
(ii) 球の半径は$[$14$] \sqrt{[$15$]}$である.
(iii) 三角柱の体積は$[$16$][$17$][$18$]$である.
武庫川女子大学 私立 武庫川女子大学 2014年 第3問
次の空欄$[$38$]$~$[$60$]$にあてはまる数字を入れよ.

原点を$\mathrm{O}$とする座標平面上に$4$点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(1,\ 0)$,$\mathrm{C}(0,\ -1)$,$\mathrm{D}(\cos \theta,\ 0)$がある.ただし$\displaystyle 0<\theta<\frac{\pi}{2}$とする.このとき,
(1)$\triangle \mathrm{ABD}$の面積は$\displaystyle \frac{[$38$]-\cos \theta}{[$39$]}$
$2$点$\mathrm{B}$,$\mathrm{C}$を通る直線$\ell_1$の方程式は
\[ y=x-[$40$] \]
$2$点$\mathrm{A}$,$\mathrm{D}$を通る直線$\ell_2$の方程式は
\[ y=-\frac{x}{\cos \theta}+[$41$] \]
$\ell_1$と$\ell_2$の交点を$\mathrm{E}$とすると,$\mathrm{E}$の座標は
\[ \left( \frac{[$42$] \cos \theta}{[$43$]+\cos \theta},\ \frac{-[$44$]+\cos \theta}{[$45$]+\cos \theta} \right) \]
である.
(2)$\angle \mathrm{ADO}=\angle \mathrm{BDF}$をみたす点$\mathrm{F}$を線分$\mathrm{AB}$上にとると,$\mathrm{F}$の座標は
\[ \left( \frac{[$46$] \cos \theta}{[$47$]+\cos \theta},\ \frac{[$48$]-\cos \theta}{[$49$]+\cos \theta} \right) \]
$\triangle \mathrm{ADF}$の面積を$S$とおくと,
\[ S=[$50$]-\cos \theta-\frac{[$51$]}{[$52$]+\cos \theta} \]
相加平均と相乗平均の関係より,
\[ [$52$]+\cos \theta+\frac{[$51$]}{[$52$]+\cos \theta} \geqq [$53$] \sqrt{$[$54$]$} \]
この等号は$\cos \theta=-[$55$]+\sqrt{[$56$]}$のとき成立する.よって
\[ [$57$]<S \leqq [$58$]-[$59$] \sqrt{[$60$]} \]
である.
上智大学 私立 上智大学 2014年 第2問
$\angle \mathrm{A}$が鋭角で$\mathrm{AB}=6$,$\mathrm{AC}=4$の$\triangle \mathrm{ABC}$がある.$\angle \mathrm{A}$の二等分線と直線$\mathrm{BC}$の交点を$\mathrm{D}$,線分$\mathrm{AD}$を$2:1$に内分する点を$\mathrm{E}$とし,直線$\mathrm{BE}$と直線$\mathrm{AC}$の交点を$\mathrm{F}$とする.

(1)面積比$\triangle \mathrm{ABE}:\triangle \mathrm{ABC}$を最も簡単な整数比で表すと,
\[ \triangle \mathrm{ABE}:\triangle \mathrm{ABC}=[コ]:[サ] \]
である.
(2)線分比$\mathrm{AF}:\mathrm{FC}$を最も簡単な整数比で表すと,
\[ \mathrm{AF}:\mathrm{FC}=[シ]:[ス] \]
である.
(3)$\triangle \mathrm{ABE}$の面積が$\displaystyle \frac{8}{5}\sqrt{5}$であるとき,$\displaystyle \sin \angle \mathrm{BAC}=\frac{\sqrt{[セ]}}{[ソ]}$,$\mathrm{BC}=[タ] \sqrt{[チ]}$,$\displaystyle \sin \angle \mathrm{ABC}=\frac{[ツ]}{[テ]}$である.
また,$\triangle \mathrm{ABC}$の外接円の半径は$[ト]$であり,内接円の半径は$\sqrt{[ナ]}-[ニ]$である.
上智大学 私立 上智大学 2014年 第1問
次の問いに答えよ.

(1)$3^{2014}$は$[ア]$桁の数であり,最も大きい位の数字は$[イ]$,一の位の数字は$[ウ]$である.ただし,
\[ \log_{10}2=0.3010,\quad \log_{10}3=0.4771,\quad \log_{10}7=0.8451 \]
とする.
(2)連立不等式
\[ \left\{ \begin{array}{l}
y \leqq -2x^2-8x-3 \\
y \geqq |3x+6| \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
で表される座標平面上の領域を$D$とする.

(i) $D$の面積は$\displaystyle \frac{[エ]}{[オ]}$である.
(ii) 点$(x,\ y)$が$D$を動くとする.

\mon[$\mathrm{(a)}$] $4x+y$の最大値は$[カ]$,最小値は$[キ]$である.
\mon[$\mathrm{(b)}$] $x^2+4x+y$の最大値は$[ク]$,最小値は$[ケ]$である.
上智大学 私立 上智大学 2014年 第1問
正三角形$\mathrm{ABC}$において,点$\mathrm{A}$から辺$\mathrm{BC}$に下ろした垂線を$\mathrm{AD}$,点$\mathrm{B}$から辺$\mathrm{AC}$に下ろした垂線を$\mathrm{BE}$とする.$\triangle \mathrm{ABD}$の内心を$\mathrm{O}$とするとき,内接円$\mathrm{O}$の半径は$1$である.円$\mathrm{O}$と$3$辺$\mathrm{AB}$,$\mathrm{AD}$,$\mathrm{BD}$との接点をそれぞれ$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$とする.

(1)$\mathrm{AE}=[ア]+\sqrt{[イ]}$である.

(2)$\mathrm{AF}=[ウ]+\sqrt{[エ]}$である.

(3)$\mathrm{AO}=\sqrt{[オ]}+\sqrt{[カ]}$である.ただし,$[オ]<[カ]$とする.

(4)$\displaystyle \mathrm{FG}=\frac{\sqrt{[キ]}+\sqrt{[ク]}}{[ケ]}$である.ただし,$[キ]<[ク]$とする.

(5)円$\mathrm{O}$の点$\mathrm{H}$を含まない弧$\mathrm{FG}$と線分$\mathrm{AF}$および線分$\mathrm{AG}$で囲まれた図形の面積は
\[ [コ]+\sqrt{[サ]}+\frac{[シ]}{[ス]}\pi \]
である.
上智大学 私立 上智大学 2014年 第2問
座標平面において,放物線$C:y=-x^2+3x$と直線$\displaystyle \ell:y=\frac{1}{2}x$で囲まれた領域を$S$とする.ただし,$S$は境界線を含むものとする.

(1)$C$と$\ell$の共有点は,原点$\mathrm{O}$と点$\displaystyle \left( \frac{[セ]}{[ソ]},\ \frac{[タ]}{[チ]} \right)$である.
(2)点$\mathrm{P}(-1,\ 3)$を通り傾きが$a$の直線$m$が,領域$S$と共有点をもつとする.このとき,$a$の範囲は
\[ [ツ] \leqq a \leqq [テ]+[ト] \sqrt{[ナ]} \]
である.
(3)$a=[テ]+[ト] \sqrt{[ナ]}$のとき,直線$m$と領域$S$の共有点を$\mathrm{Q}$とすると,$\mathrm{Q}$の$x$座標は$[ニ]+\sqrt{[ヌ]}$である.
(4)$\triangle \mathrm{OPQ}$の面積は$[ネ]+[ノ] \sqrt{[ハ]}$である.
(5)線分$\mathrm{OP}$,線分$\mathrm{PQ}$および放物線$C$で囲まれた図形の面積は
\[ \frac{[ヒ]}{[フ]}+\frac{[ヘ]}{[ホ]} \sqrt{[マ]} \]
である.
上智大学 私立 上智大学 2014年 第2問
$\mathrm{AB}=3$,$\mathrm{BC}=3$,$\mathrm{CA}=2$である$\triangle \mathrm{ABC}$の辺$\mathrm{AB}$上を動く点を$\mathrm{P}$とし,$\mathrm{AP}=t$とする.点$\mathrm{P}$から辺$\mathrm{AC}$に下ろした垂線を$\mathrm{PQ}$,辺$\mathrm{BC}$に下ろした垂線を$\mathrm{PR}$とする.ただし,点$\mathrm{P}$が点$\mathrm{A}$と一致するとき,点$\mathrm{Q}$も点$\mathrm{A}$と一致し,点$\mathrm{P}$が点$\mathrm{B}$と一致するとき,点$\mathrm{R}$も点$\mathrm{B}$と一致するものとする.

(1)$\displaystyle \mathrm{CQ}=\frac{[サ]}{[シ]}t+[ス]$,$\displaystyle \mathrm{CR}=\frac{[セ]}{[ソ]}t+\frac{[タ]}{[チ]}$である.
(2)$\mathrm{QR}$は$t=[ツ]$のとき最大値$[テ] \sqrt{[ト]}$をとり,$\displaystyle t=\frac{[ナ]}{[ニ]}$のとき最小値$\displaystyle \frac{[ヌ]}{[ネ]}$をとる.
(3)$\triangle \mathrm{CQR}$の面積は$\displaystyle t=\frac{[ノ]}{[ハ]}$のとき最大値$\displaystyle \frac{[ヒ]}{[フ]} \sqrt{[ヘ]}$をとる.
上智大学 私立 上智大学 2014年 第2問
$\mathrm{AB}=8$,$\mathrm{BC}=5$,$\angle \mathrm{B}={60}^\circ$の$\triangle \mathrm{ABC}$がある.

(1)$\mathrm{AC}=[ア]$,$\triangle \mathrm{ABC}$の面積は$[イ] \sqrt{[ウ]}$,$\triangle \mathrm{ABC}$の内接円の半径は$\sqrt{[エ]}$である.
(2)$\triangle \mathrm{ABC}$の外接円の半径は$\displaystyle \frac{[オ]}{[カ]} \sqrt{[キ]}$である.
(3)$\triangle \mathrm{ABC}$の外接円の点$\mathrm{B}$を含まない弧$\mathrm{AC}$上に$\mathrm{AD}=3$となる点$\mathrm{D}$をとる.このとき,$\mathrm{CD}=[ク]$である.
(4)$\displaystyle \cos \angle \mathrm{BAD}=\frac{[ケ]}{[コ]}$,$\displaystyle \mathrm{BD}=\frac{[サ]}{[シ]}$である.
(5)$\mathrm{AC}$と$\mathrm{BD}$の交点を$\mathrm{E}$とするとき,$\displaystyle \cos \angle \mathrm{AED}=\frac{[ス]}{[セ]}$である.
上智大学 私立 上智大学 2014年 第3問
$a$を$-1$でない実数とし,座標平面において,放物線
\[ C:y=(x^2-2x+1)+a(x^2-5x+6) \]
を考える.

(1)$C$は,$a$の値によらず$2$点$\mathrm{P}([ソ],\ [タ])$,$\mathrm{Q}([チ],\ [ツ])$を必ず通る.ただし,$[ソ]<[チ]$とする.
(2)点$\mathrm{P}$における$C$の接線を$\ell$,点$\mathrm{Q}$における$C$の接線を$\ell^\prime$とする.$\ell$と$\ell^\prime$の交点の座標は$\displaystyle \left( \frac{[テ]}{[ト]},\ \frac{[ナ]}{[ニ]}a+[ヌ] \right)$である.

(3)$C$の軸は$\displaystyle x=\frac{1}{2} \left( [ネ]+\frac{[ノ]}{a+[ハ]} \right)$である.

(4)$C$が$x$軸と異なる$2$点で交わるのは

$a<[ヒ]$ \ または \ $[フ]<a$ \quad (ただし$a \neq -1$)

のときである.
(5)$a=[フ]$のとき,$C$は点$\displaystyle \left( \frac{[ヘ]}{[ホ]},\ 0 \right)$で$x$軸と接する.
(6)$C$が$x$軸と$2$点$(\alpha,\ 0)$,$(\beta,\ 0)$(ただし$\alpha<\beta$)で交わるとき,$\displaystyle \beta-\alpha=\frac{2}{3} \sqrt{5}$となるのは,$a=[マ]$または$\displaystyle a=\frac{[ミ]}{[ム]}$のときである.ただし,$\displaystyle [マ]<\frac{[ミ]}{[ム]}$とする.$a=[マ]$のとき,$C$と$x$軸で囲まれた図形の面積は$\displaystyle \frac{[メ]}{[モ]} \sqrt{[ヤ]}$である.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。