タグ「面積比」の検索結果

2ページ目:全23問中11問~20問を表示)
北星学園大学 私立 北星学園大学 2014年 第2問
$\triangle \mathrm{ABC}$の頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$と三角形の外部にある点$\mathrm{O}$を結ぶ各直線が,三角形の対辺またはその延長上と交わる点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とする.ただし,点$\mathrm{O}$は三角形の辺上にも,その延長上にもないものとする.
(図は省略)

(1)三角形の面積比$\triangle \mathrm{AOB}:\triangle \mathrm{AOC}$および$\triangle \mathrm{BOC}:\triangle \mathrm{BOA}$を線分$\mathrm{BP}$,$\mathrm{CP}$,$\mathrm{AQ}$,$\mathrm{CQ}$の長さを用いて求めよ.
(2)$\displaystyle \frac{\mathrm{AR}}{\mathrm{AB}} \cdot \frac{\mathrm{BP}}{\mathrm{PC}} \cdot \frac{\mathrm{CO}}{\mathrm{OR}}=1$となることを証明せよ.
(3)$\mathrm{AB}=5$,$\mathrm{BC}=8$,$\mathrm{AR}=4$,$\mathrm{CP}=3$のとき,比$\mathrm{RO}:\mathrm{CO}$を求めよ.
上智大学 私立 上智大学 2014年 第2問
$\angle \mathrm{A}$が鋭角で$\mathrm{AB}=6$,$\mathrm{AC}=4$の$\triangle \mathrm{ABC}$がある.$\angle \mathrm{A}$の二等分線と直線$\mathrm{BC}$の交点を$\mathrm{D}$,線分$\mathrm{AD}$を$2:1$に内分する点を$\mathrm{E}$とし,直線$\mathrm{BE}$と直線$\mathrm{AC}$の交点を$\mathrm{F}$とする.

(1)面積比$\triangle \mathrm{ABE}:\triangle \mathrm{ABC}$を最も簡単な整数比で表すと,
\[ \triangle \mathrm{ABE}:\triangle \mathrm{ABC}=[コ]:[サ] \]
である.
(2)線分比$\mathrm{AF}:\mathrm{FC}$を最も簡単な整数比で表すと,
\[ \mathrm{AF}:\mathrm{FC}=[シ]:[ス] \]
である.
(3)$\triangle \mathrm{ABE}$の面積が$\displaystyle \frac{8}{5}\sqrt{5}$であるとき,$\displaystyle \sin \angle \mathrm{BAC}=\frac{\sqrt{[セ]}}{[ソ]}$,$\mathrm{BC}=[タ] \sqrt{[チ]}$,$\displaystyle \sin \angle \mathrm{ABC}=\frac{[ツ]}{[テ]}$である.
また,$\triangle \mathrm{ABC}$の外接円の半径は$[ト]$であり,内接円の半径は$\sqrt{[ナ]}-[ニ]$である.
名古屋市立大学 公立 名古屋市立大学 2014年 第2問
空間に四面体$\mathrm{ABCD}$と点$\mathrm{P}$,$\mathrm{Q}$があり,
\[ \begin{array}{l}
4 \overrightarrow{\mathrm{PA}}+5 \overrightarrow{\mathrm{PB}}+6 \overrightarrow{\mathrm{PC}}=\overrightarrow{\mathrm{0}} \\
4 \overrightarrow{\mathrm{QA}}+5 \overrightarrow{\mathrm{QB}}+6 \overrightarrow{\mathrm{QC}}+7 \overrightarrow{\mathrm{QD}}=\overrightarrow{\mathrm{0}}
\end{array} \]
を満たす.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{AC}}$を用いて表せ.
(2)三角形$\mathrm{PAB}$と三角形$\mathrm{PBC}$の面積比を求めよ.
(3)四面体$\mathrm{QABC}$と四面体$\mathrm{QBCD}$の体積比を求めよ.
名古屋市立大学 公立 名古屋市立大学 2014年 第2問
空間に四面体$\mathrm{ABCD}$と点$\mathrm{P}$,$\mathrm{Q}$があり,
\[ \begin{array}{l}
4 \overrightarrow{\mathrm{PA}}+5 \overrightarrow{\mathrm{PB}}+6 \overrightarrow{\mathrm{PC}}=\overrightarrow{\mathrm{0}} \\
4 \overrightarrow{\mathrm{QA}}+5 \overrightarrow{\mathrm{QB}}+6 \overrightarrow{\mathrm{QC}}+7 \overrightarrow{\mathrm{QD}}=\overrightarrow{\mathrm{0}}
\end{array} \]
を満たす.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{AC}}$を用いて表せ.
(2)三角形$\mathrm{PAB}$と三角形$\mathrm{PBC}$の面積比を求めよ.
(3)四面体$\mathrm{QABC}$と四面体$\mathrm{QBCD}$の体積比を求めよ.
安田女子大学 私立 安田女子大学 2013年 第1問
次の問いに答えよ.

(1)$\displaystyle \frac{2+\sqrt{2}}{\sqrt{2}+1}$の分母を有理化して簡単にせよ.
(2)$x^3+x^2y-x^2z-xy^2-y^3+y^2z$を因数分解せよ.
(3)$1$冊$180$円のノートと$1$本$80$円の鉛筆をいくつか買い,代金の合計を$900$円以下にしたい.買い方は何通りあるか求めよ.ただし,ノートは$2$冊以上,鉛筆は$1$本以上買うものとする.
(4)半径$2$の円に内接する正六角形$P$と外接する正六角形$Q$がある.$P$と$Q$の面積比を求めよ.
徳島大学 国立 徳島大学 2011年 第3問
平面上に$\triangle$ABCと点Pがある.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AP}}=k\overrightarrow{\mathrm{AB}}+\ell \overrightarrow{\mathrm{AC}}$とする.点Pが$\triangle$ABCの周および内部にあるための条件を,$k,\ \ell$を用いて表せ.
(2)$5\overrightarrow{\mathrm{AP}}+11\overrightarrow{\mathrm{CP}}=2\overrightarrow{\mathrm{CB}}$が成り立つとき,(1)の$k,\ \ell$の値を求めよ.
(3)$5\overrightarrow{\mathrm{AP}}+11\overrightarrow{\mathrm{CP}}=2\overrightarrow{\mathrm{CB}}$が成り立つとき,面積比$\triangle \text{PAB}:\triangle \text{PBC}:\triangle \text{PCA}$を求めよ.
徳島大学 国立 徳島大学 2011年 第2問
平面上に$\triangle \mathrm{ABC}$と点$\mathrm{P}$がある.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AP}}=k\overrightarrow{\mathrm{AB}}+\ell \overrightarrow{\mathrm{AC}}$とする.点$\mathrm{P}$が$\triangle \mathrm{ABC}$の周および内部にあるための条件を,$k,\ \ell$を用いて表せ.
(2)$5\overrightarrow{\mathrm{AP}}+11\overrightarrow{\mathrm{CP}}=2\overrightarrow{\mathrm{CB}}$が成り立つとき,(1)の$k,\ \ell$の値を求めよ.
(3)$5\overrightarrow{\mathrm{AP}}+11\overrightarrow{\mathrm{CP}}=2\overrightarrow{\mathrm{CB}}$が成り立つとき,面積比$\triangle \mathrm{PAB}:\triangle \mathrm{PBC}:\triangle \mathrm{PCA}$を求めよ.
島根大学 国立 島根大学 2011年 第1問
平面上に一辺の長さが1の正三角形OABと,辺AB上の点Cがあり,$\text{AC}<\text{BC}$とする.点Aを通り直線ABに直交する直線$k$と,直線OCとの交点をDとする.$\triangle$OCAと$\triangle$ACDの面積比が$1:2$であるとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OD}}=m\overrightarrow{\mathrm{OA}}+n\overrightarrow{\mathrm{OB}}$となる$m,\ n$を求めよ.
(2)点Dを通り,直線ODと直交する直線を$\ell$とする.$\ell$と直線OA,OBとの交点をそれぞれE,Fとするとき,$\overrightarrow{\mathrm{EF}}=s\overrightarrow{\mathrm{OA}}+t\overrightarrow{\mathrm{OB}}$となる$s,\ t$を求めよ.
高知工科大学 公立 高知工科大学 2011年 第2問
$\triangle$ABCの頂点を通らない直線$\ell$が,辺AC,辺BCのB方向への延長線,および辺ABと,それぞれ点P,Q,Rで交わり,
\[ \text{AP}:\text{PC}=\alpha:1,\quad \text{CQ}:\text{QB}=\beta:1 \]
であるとする.$\overrightarrow{\mathrm{CA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{CB}}=\overrightarrow{b}$として,次の各問に答えよ.

(1)$\overrightarrow{\mathrm{CR}}$を$\alpha,\ \beta,\ \overrightarrow{a},\ \overrightarrow{b}$で表し,等式$\displaystyle \frac{\text{AP}}{\text{PC}} \cdot \frac{\text{CQ}}{\text{QB}} \cdot \frac{\text{BR}}{\text{RA}}=1$を証明せよ.
(2)$\triangle$QRB,$\triangle$BCR,$\triangle$APRの面積比が$1:2:3$のとき,$\triangle$APRと$\triangle$CPRの面積比を求めよ.
(3)(2)のとき,直線CRと直線AQの交点をDとする.線分の長さの比$\text{AD}:\text{QD}$を求めよ.
大分大学 国立 大分大学 2010年 第3問
平面上に$\text{OA} \perp \text{AP},\ \text{OB} \perp \text{BP}$を満たす四角形OAPBがある.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b}$と表すと,
\[ \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\overrightarrow{a} \cdot \overrightarrow{a}}=\frac{1}{4},\quad \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\overrightarrow{b} \cdot \overrightarrow{b}}=\frac{1}{7} \]
が成立している.

(1)$\angle \text{AOB}=\theta$として,$\cos \theta$の値を求めなさい.
(2)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表しなさい.
(3)$\triangle$OABと$\triangle$PBAの面積比を求めなさい.
(4)$|\overrightarrow{\mathrm{OP}}|=2\sqrt{7}$のとき,$|\overrightarrow{\mathrm{AB}}|$を求めなさい.
スポンサーリンク

「面積比」とは・・・

 まだこのタグの説明は執筆されていません。