タグ「隣接」の検索結果

1ページ目:全15問中1問~10問を表示)
獨協医科大学 私立 獨協医科大学 2015年 第2問
正$n$角形$\mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_3 \cdots \mathrm{P}_n$($n$は$4$以上の整数)を$K$とする.$K$の頂点と各辺の中点の合計$2n$個の点から異なる$3$点を選び,それらを線分で結んでできる図形を$T$とする.(ただし,$K$の$1$つの頂点とそれに隣接する中点の一方を結ぶ線分を$1$辺とする三角形,例えば辺$\mathrm{P}_1 \mathrm{P}_2$の中点を$\mathrm{M}_1$として,三角形$\mathrm{P}_1 \mathrm{M}_1 \mathrm{P}_3$なども「$K$と辺を共有する三角形」とする.)

(1)$n=5$とする.
$T$が三角形となる確率は$\displaystyle \frac{[アイ]}{[ウエ]}$である.
$T$が二等辺三角形となる確率は$\displaystyle \frac{[オ]}{[カキ]}$である.
$T$が$K$と辺を共有しない三角形となる確率は$\displaystyle \frac{[ク]}{[ケ]}$である.
(2)$T$が三角形となる確率は
\[ \frac{[コ]n^2-[サ]n-[シ]}{[ス]([セ]n-[ソ])(n-[タ])} \]
である.
$T$が$K$と辺を共有しない三角形となる確率は
\[ \frac{[チ]n^2-[ツテ]n+[トナ]}{([セ]n-[ソ])(n-[タ])} \]
である.
兵庫県立大学 公立 兵庫県立大学 2015年 第5問
\begin{mawarikomi}{45mm}{
(図は省略)
}
図に示すように,ある円の周上に$4$つの円板$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$が置かれ,円の中心には円板$\mathrm{K}$が置かれている.当初$\mathrm{A}$には$\bullet$で示される小石が置かれている.この状態から,順次サイコロを振り以下の手順で小石を移動し小石の位置取りを繰り返す.

(i) 現在$\mathrm{K}$に小石がある場合は,出た目の数にかかわらず,新たな位置取りはそのまま$\mathrm{K}$とする.
(ii) 出た目の数が$1$または$2$の場合,小石を現在の場所から$\mathrm{K}$に移動する.
(iii) 出た目の数が$3$の場合,小石を現在の場所から反時計回り,すなわち,$\mathrm{A} \to \mathrm{B} \to \mathrm{C} \to \mathrm{D} \to \mathrm{A}$の向きで,隣接する円板に移動する.
\mon[$\tokeishi$] 出た目の数が$4$以上の場合,小石を現在の場所から時計回り,すなわち,$\mathrm{A} \to \mathrm{D} \to \mathrm{C} \to \mathrm{B} \to \mathrm{A}$の向きで,隣接する円板に移動する.

\end{mawarikomi}
次の問に答えなさい.

(1)$n$回目の位置取り後,小石が$\mathrm{K}$にある確率を$k_n$と表す.$k_n$を求めなさい.
(2)偶数回位置取りを行った場合,小石は$\mathrm{K}$になければ$\mathrm{A}$または$\mathrm{C}$にあることを示しなさい.
(3)$n$回目の位置取り後,小石が$\mathrm{A}$にある確率を$a_n$と表す.$a_2$を求めなさい.また,$a_{2n+2}$を$a_{2n}$および$k_{2n}$を用いて表しなさい.
(4)$a_n$を求めなさい.
千葉大学 国立 千葉大学 2014年 第2問
座標平面上に,原点を中心とする半径$1$の円と,その円に外接し各辺が$x$軸または$y$軸に平行な正方形がある.円周上の点$(\cos \theta,\ \sin \theta)$(ただし$\displaystyle 0<\theta<\frac{\pi}{2}$)における接線と正方形の隣接する$2$辺がなす三角形の$3$辺の長さの和は一定であることを示せ.また,その三角形の面積を最大にする$\theta$を求めよ.
千葉大学 国立 千葉大学 2014年 第3問
座標平面上に,原点を中心とする半径$1$の円と,その円に外接し各辺が$x$軸または$y$軸に平行な正方形がある.円周上の点$(\cos \theta,\ \sin \theta)$(ただし$\displaystyle 0<\theta<\frac{\pi}{2}$)における接線と正方形の隣接する$2$辺がなす三角形の$3$辺の長さの和は一定であることを示せ.また,その三角形の面積を最大にする$\theta$を求めよ.
千葉大学 国立 千葉大学 2014年 第5問
座標平面上に,原点を中心とする半径$1$の円と,その円に外接し各辺が$x$軸または$y$軸に平行な正方形がある.円周上の点$(\cos \theta,\ \sin \theta)$(ただし$\displaystyle 0<\theta<\frac{\pi}{2}$)における接線と正方形の隣接する$2$辺がなす三角形の$3$辺の長さの和は一定であることを示せ.また,その三角形の面積を最大にする$\theta$を求めよ.
千葉大学 国立 千葉大学 2014年 第2問
座標平面上に,原点を中心とする半径$1$の円と,その円に外接し各辺が$x$軸または$y$軸に平行な正方形がある.円周上の点$(\cos \theta,\ \sin \theta)$(ただし$\displaystyle 0<\theta<\frac{\pi}{2}$)における接線と正方形の隣接する$2$辺がなす三角形の$3$辺の長さの和は一定であることを示せ.また,その三角形の面積を最大にする$\theta$を求めよ.
千葉大学 国立 千葉大学 2014年 第2問
座標平面上に,原点を中心とする半径$1$の円と,その円に外接し各辺が$x$軸または$y$軸に平行な正方形がある.円周上の点$(\cos \theta,\ \sin \theta)$(ただし$\displaystyle 0<\theta<\frac{\pi}{2}$)における接線と正方形の隣接する$2$辺がなす三角形の$3$辺の長さの和は一定であることを示せ.また,その三角形の面積を最大にする$\theta$を求めよ.
慶應義塾大学 私立 慶應義塾大学 2014年 第3問
正六角形$\mathrm{ABCDEF}$の頂点$\mathrm{D}$と正六角形の外部の点$\mathrm{G}$を線分で結んだ下のような図形がある.動点$\mathrm{P}$はこの図形の線分上を動き,点から点へ移動する.動点$\mathrm{P}$の隣接する点への移動には$1$秒間を要する.また,隣接する点が複数あるときは,等しい確率でどれか$1$つの点に移動するものとする.
(図は省略)

(1)動点$\mathrm{P}$が$\mathrm{A}$から出発して$4$秒後に$\mathrm{G}$にいる確率は$\displaystyle \frac{[$53$]}{[$54$][$55$]}$である.

(2)動点$\mathrm{P}$が$\mathrm{A}$から出発して$5$秒後に$\mathrm{D}$にいる確率は$\displaystyle \frac{[$56$][$57$]}{[$58$][$59$]}$である.

(3)動点$\mathrm{P}$が$\mathrm{A}$から出発して$\mathrm{D}$に到達した時点で移動を終了するとき,$2n+1$秒以内に移動を終了する確率は$\displaystyle \frac{{[$60$]}^n-{[$61$]}^n}{{[$62$]}^n}$である.ただし,$n$は自然数とする.
広島大学 国立 広島大学 2013年 第2問
座標平面上の点で,$x$座標と$y$座標がともに整数である点を格子点という.$n$を$3$以上の自然数とし,連立不等式
\[ x \geqq 0,\quad y \geqq 0,\quad x+y \leqq n \]
の表す領域を$D$とする.格子点$\mathrm{A}(a,\ b)$に対して,領域$D$内の格子点$\mathrm{B}(c,\ d)$が$|a-c|+|b-d|=1$を満たすとき,点$\mathrm{B}$を点$\mathrm{A}$の隣接点という.次の問いに答えよ.

(1)領域$D$内の格子点のうち隣接点の個数が$4$であるものの個数を求めよ.
(2)領域$D$から格子点を$1$つ選ぶとき,隣接点の個数の期待値が$3$以上となるような$n$の範囲を求めよ.ただし,格子点の選ばれ方は同様に確からしいものとする.
(3)領域$D$から異なる格子点を$2$つ選ぶとき,互いに隣接点である確率を求めよ.ただし,異なる格子点の選ばれ方は同様に確からしいものとする.
広島大学 国立 広島大学 2013年 第5問
座標平面上の点で,$x$座標と$y$座標がともに整数である点を格子点という.$n$を$3$以上の自然数とし,連立不等式
\[ x \geqq 0,\quad y \geqq 0,\quad x+y \leqq n \]
の表す領域を$D$とする.格子点$\mathrm{A}(a,\ b)$に対して,領域$D$内の格子点$\mathrm{B}(c,\ d)$が$|a-c|+|b-d|=1$を満たすとき,点$\mathrm{B}$を点$\mathrm{A}$の隣接点という.次の問いに答えよ.

(1)点$\mathrm{O}(0,\ 0)$の隣接点をすべて求めよ.また,領域$D$内の格子点$\mathrm{P}$が直線$x+y=n$上にあるとき,$\mathrm{P}$の隣接点の個数を求めよ.
(2)領域$D$内の格子点のうち隣接点の個数が$4$であるものの個数を求めよ.
(3)領域$D$から格子点を$1$つ選ぶとき,隣接点の個数の期待値が$3$以上となるような$n$の範囲を求めよ.ただし,格子点の選ばれ方は同様に確からしいものとする.
スポンサーリンク

「隣接」とは・・・

 まだこのタグの説明は執筆されていません。