タグ「関数」の検索結果

91ページ目:全2213問中901問~910問を表示)
広島修道大学 私立 広島修道大学 2014年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)方程式$x^2+4x-5=0$の解は$[$1$]$である.また,不等式$x^2+4x-5>0$の解は$[$2$]$である.
(2)整式$f(x)$を$(x-3)(x+2)$で割った余りは$4x-3$である.このとき,$f(x)$を$x+2$で割った余りは$[$3$]$である.
(3)$0 \leqq \theta \leqq \pi$のとき,関数$y=2 \cos^2 \theta+2 \sqrt{2} \sin \theta$の最大値は$[$4$]$,最小値は$[$5$]$である.
(4)$3$点$\mathrm{A}(5,\ -1)$,$\mathrm{B}(2,\ 2)$,$\mathrm{C}$を頂点とする三角形の重心の座標が$\displaystyle \left( \frac{7}{3},\ -\frac{5}{3} \right)$であるとき,点$\mathrm{C}$の座標は$[$6$]$である.このとき,点$\mathrm{C}$を通り直線$\mathrm{AB}$に平行な直線の方程式は$[$7$]$であり,$\cos B$の値は$[$8$]$である.
(5)白の碁石が$5$個,黒の碁石が$5$個,合わせて$10$個の碁石から$8$個の碁石を選んで一列に並べるとき,並べ方は$[$9$]$通りある.このうち,同じ色の碁石が連続して$5$個並ぶ並べ方は$[$10$]$通りあり,また白の碁石が連続して$4$個以上並ぶ並べ方は$[$11$]$通りある.
早稲田大学 私立 早稲田大学 2014年 第1問
$[ア]$~$[エ]$にあてはまる数または式を記入せよ.

(1)$x$についての多項式$P(x)$を$x^2+x+1$で割った余りが$x+1$,$x^2-x+1$で割った余りが$x-1$のとき,$P(x)$を$(x^2+x+1)(x^2-x+1)$で割った余りは$[ア]$である.
(2)関数$f(x)$が次の条件を満たすとき,$f(x)=[イ]$である.
任意の実数$x$に対して,$\displaystyle \int_0^x f(t) \, dt-3 \int_{-x}^0 f(t) \, dt=x^3$
(3)次の等式を満たす最大の整数$a$は$a=[ウ]$である.
\[ \left[ \frac{a}{2} \right]+\left[ \frac{2a}{3} \right]=a \]
ただし,実数$x$に対して,$[x]$は$x$以下の最大の整数を表す.
(4)四面体$\mathrm{ABCD}$において,$\mathrm{AC}=\mathrm{BD}=7$,$\mathrm{AB}=\mathrm{CD}=6$,$\mathrm{BC}=\mathrm{DA}=5$である.$4$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$を,それぞれ辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CD}$,$\mathrm{DA}$上の点とするとき,$\mathrm{PQ}+\mathrm{QR}+\mathrm{RS}+\mathrm{SP}$の最小値は$[エ]$である.
津田塾大学 私立 津田塾大学 2014年 第4問
関数$\displaystyle f(x)=\frac{2}{2-x}$について,以下の問に答えよ.

(1)$y=f(x)$のグラフをかけ.

(2)定積分$\displaystyle \int_0^1 f(x) \, dx$を求めよ.

(3)$0 \leqq a \leqq 1$とし,点$(a,\ f(a))$における曲線$y=f(x)$の接線を$y=g(x)$とする.定積分$\displaystyle \int_0^1 g(x) \, dx$の値$S$を最大にする$a$の値と,そのときの$S$の値を求めよ.
津田塾大学 私立 津田塾大学 2014年 第3問
関数$f(t)=2 |t-1|$について,次の問に答えよ.

(1)$\displaystyle g(x)=\int_0^x f(t) \, dt$とおく.$g(x)$を求めよ.
(2)曲線$y=g(x)$のグラフをかけ.
(3)曲線$y=g(x)$と,点$(2,\ g(2))$における$y=g(x)$の接線で囲まれた領域の面積を求めよ.
学習院大学 私立 学習院大学 2014年 第3問
条件${0}^{\circ} \leqq a \leqq {180}^{\circ}$を満たす$a$に対して,関数$f(x)$を
\[ f(x)=\sin (x+a)-\sqrt{3} \cos (x+a) \]
と定める.$x$が$0^\circ \leqq x \leqq {90}^\circ$の範囲を動くとき,$f(x)$の最大値と最小値を求めよ.
早稲田大学 私立 早稲田大学 2014年 第2問
$3$次関数$f(x)=x^3-ax-b$について,次の問に答えよ.

(1)$a>0$であるとき,$f(x)$の極大値と極小値を求めよ.
(2)次の$(ⅰ)$,$(ⅱ)$,$(ⅲ)$を示せ.

(i) $27b^2-4a^3>0$のとき,$3$次方程式$f(x)=0$はただ$1$つの実数解をもつ.
(ii) $27b^2-4a^3=0$かつ$a>0$のとき,$3$次方程式$f(x)=0$は異なる$2$つの実数解をもつ.
(iii) $27b^2-4a^3<0$のとき,$3$次方程式$f(x)=0$は異なる$3$つの実数解をもつ.
早稲田大学 私立 早稲田大学 2014年 第4問
関数$f(x)$を次の積分で定義する.
\[ f(x)=\int_x^{x+\log 2} |e^{2t|-e^t-2} \, dt \]
次の問に答えよ.

(1)$g(t)=e^{2t}-e^t-2$のグラフを描け.
(2)$f(x)$を求めよ.
(3)$f(x)$が極値をとる$x$を求めよ.
神奈川大学 私立 神奈川大学 2014年 第1問
次の空欄$[ア]$~$[エ]$を適当に補え.

(1)放物線$y=4x^2-4x+8$の頂点の座標は$[ア]$である.
(2)方程式$2 \cdot 4^x+2^x-1=0$の解は,$x=[イ]$である.

(3)関数$f(x)=x^2$について,$\displaystyle \lim_{h \to 0} \frac{f(2+h)-f(2)}{f(3+h)-f(3)}=[ウ]$である.

(4)白球$4$個,黒球$3$個,赤球$2$個が入っている袋から,$2$個の球を同時に取り出すとき,$2$個の球が異なる色である確率は$[エ]$である.
神奈川大学 私立 神奈川大学 2014年 第3問
$\displaystyle f(x)=-\frac{1}{3}x^3+\frac{1}{2}x^2+2$とする.以下の問いに答えよ.

(1)$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)$f(x)$の増減表をかき,極値を求めよ.
(3)$y=f^\prime(x)$のグラフと$x$軸で囲まれた部分の面積を$S_1$とする.$S_1$を求めよ.
(4)$0<k<1$とする.直線$y=kx$と$y=f^\prime(x)$のグラフで囲まれた部分の面積を$S_2$とする.$S_2$を$k$の式で表せ.
(5)$S_2$が$S_1$の$\displaystyle \frac{1}{8}$となるときの$k$の値を求めよ.
早稲田大学 私立 早稲田大学 2014年 第1問
$0 \leqq x \leqq 8$とする.

(1)不等式
\[ \sin \left( \frac{\pi}{12}x \right)+\cos \left( \frac{\pi}{12}x \right) \leqq \frac{\sqrt{6}}{2} \]
を満たす$x$の範囲は
\[ 0 \leqq x \leqq [ア] \quad \text{および} \quad [イ] \leqq x \leqq 8 \cdots\cdots (*) \]
である.
(2)$x$が$(*)$の範囲を動くとき,関数
\[ f(x)=|x(x-5)(x-8)| \]
は$x=[ウ]$のとき最大値$[エ]$をとる.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。