タグ「関数」の検索結果

89ページ目:全2213問中881問~890問を表示)
大阪工業大学 私立 大阪工業大学 2014年 第1問
次の空所を埋めよ.

(1)$2$次方程式$x^2-4x+2=0$の解を$\alpha,\ \beta$とするとき,$\alpha+\beta=[ア]$であり,$\alpha^3+\beta^3=[イ]$である.
(2)関数$y=|x^2-2x|$のグラフと直線$y=x-1$の共有点の$x$座標は$[ウ]$と$[エ]$である.ただし,$[ウ]<[エ]$とする.
(3)$2$個のさいころを同時に投げるとき,$2$個の目がともに$5$となる確率は$[オ]$であり,少なくとも$1$個の目が$5$以上である確率は$[カ]$である.
(4)$a$を実数とするとき,$\displaystyle \int_0^2 (6x^2-2ax-a^2) \, dx \geqq 0$となるための必要十分条件は$[キ] \leqq a \leqq [ク]$である.
京都産業大学 私立 京都産業大学 2014年 第3問
$\mathrm{O}$を原点とする$xy$平面上に$2$点$\mathrm{A}(2,\ 0)$,$\mathrm{B}(0,\ 2)$がある.直線$\ell$は辺$\mathrm{OB}$上の点$\mathrm{P}(0,\ t) (0 \leqq t \leqq 2)$を通り,$\triangle \mathrm{OAB}$の面積を$2$等分しているとする.直線$\ell$と$\triangle \mathrm{OAB}$の辺の$2$つの交点のうち,点$\mathrm{P}$でない方の点を$\mathrm{Q}$とし,線分$\mathrm{PQ}$の中点を$\mathrm{R}$とする.以下の問いに答えよ.

(1)$0 \leqq t \leqq 1$のとき,点$\mathrm{R}$の座標$(x,\ y)$を$t$を用いて表せ.
(2)$(1)$のとき,$x$のとる値の範囲を求めよ.また,$y$を$x$の式で表せ.
(3)$1 \leqq t \leqq 2$のとき,点$\mathrm{R}$の座標$(x,\ y)$を$t$を用いて表せ.
(4)$(3)$のとき,$x$のとる値の範囲を求めよ.また,$y$を$x$の式で表せ.
(5)$(2)$で求めた$x$の式を$f(x)$,$(4)$で求めた$x$の式を$g(x)$とする.$2$曲線$y=f(x)$,$y=g(x)$と直線$\displaystyle x=\frac{1}{2}$で囲まれた部分の面積を求めよ.
中京大学 私立 中京大学 2014年 第1問
以下の各問で,$[ ]$にあてはまる数値または記号を求めよ.

(1)放物線$y=ax^2+bx+c (a>0)$が点$(0,\ 9)$を通るとき,
\[ c=[ア] \]
である.さらに,この放物線が点$(3,\ 3)$を通り,放物線の頂点が直線$16x-4y=29$上にあるとき,
\[ (a,\ b)=([イ],\ -[ウ]) \ \text{または} \ \left( \frac{[エ][オ]}{[カ]},\ -\frac{[キ][ク]}{3} \right) \]
である.
(2)$\mathrm{AB}=\mathrm{AC}=2$,$\angle \mathrm{BAC}={90}^\circ$である$\triangle \mathrm{ABC}$の内接円の半径は
\[ [ア]-\sqrt{2} \]
である.また,この内接円に外接し,辺$\mathrm{AB}$,辺$\mathrm{AC}$に接する円の半径は
\[ [イ][ウ]-[エ] \sqrt{2} \]
である.
(3)初項が$a$($a$は自然数),公差が$4$の等差数列$\{a_n\}$と,$a_n$を$9$で割った余りの数列$\{b_n\}$があり,$\displaystyle S_n=\sum_{k=1}^n b_k$とする.$a=1$とするとき,$S_n>2014$となる最小の$n$は
\[ [ア][イ][ウ] \]
であり,
\[ S_{[ア][イ][ウ]}=20 [エ][オ] \]
である.また,$S_n$がちょうど$2014$となる$a$の最小値は
\[ [カ] \]
である.
(4)関数$\displaystyle f(\theta)=2(\sin \theta+\cos \theta)^3-9(\sin \theta+\cos \theta) \left( -\frac{\pi}{4} \leqq \theta \leqq \frac{\pi}{4} \right)$は$\displaystyle \theta=\frac{\pi}{6}$のとき,
\[ f \left( \frac{\pi}{6} \right)=-[ア]-[イ] \sqrt{[ウ]} \]
となる.また,
$\displaystyle \theta=\frac{\pi}{[エ][オ]}$のとき,最小値$-[カ] \sqrt{[キ]}$

をとり,

$\displaystyle \theta=-\frac{\pi}{[ク]}$のとき,最大値$[ケ]$

をとる.
中部大学 私立 中部大学 2014年 第2問
$0<x<\pi$で定義された関数$\displaystyle f(x)=\frac{1}{\sin x}$について,次の問いに答えよ.

(1)$\displaystyle f \left( \frac{\pi}{3} \right)$を求めよ.
(2)$f^\prime(x)$と$f^{\prime\prime}(x)$を求めよ.また,$f^{\prime\prime}(x)>0$となることを示せ.これらの結果を増減表に書き,曲線$y=f(x)$のグラフの概形をかけ.
(3)$0 \leqq t \leqq 1$に対し,$0<a \leqq x<\pi$を満たす任意の$a$と$x$を考えると,
\[ tf(a)+(1-t)f(x) \geqq f(at+(1-t)x) \]
が成り立つことを示せ.
(4)三角形$\mathrm{ABC}$のそれぞれの角を$A,\ B,\ C$とすると$\displaystyle \frac{1}{\sin A}+\frac{1}{\sin B}+\frac{1}{\sin C} \geqq 2 \sqrt{3}$が成り立つことを証明せよ.
中部大学 私立 中部大学 2014年 第3問
関数$f(x)=x^2-4 |x+2|+2x+4$について,次の問いに答えよ.

(1)曲線$y=f(x)$の概形をかけ.
(2)$y=f(x)$のグラフに$2$点で接する直線の方程式を求めよ.
(3)$(2)$で求めた接線と$y=f(x)$が囲む部分の面積を求めよ.
金沢工業大学 私立 金沢工業大学 2014年 第4問
関数$\displaystyle F(x)=\int_0^{2x} (x-t) \cos 3t \, dt$を考える.

(1)$\displaystyle F^\prime(x)=\frac{[ク]}{[ケ]} \sin [コ]x-[サ] x \cos [シ]x$より$\displaystyle F^\prime \left( \frac{\pi}{6} \right)=\frac{[ス]}{[セ]}$である.
(2)$\displaystyle F^{\prime\prime}(x)=[ソタ] x \sin [チ] x$より$\displaystyle F^{\prime\prime} \left( \frac{\pi}{6} \right)=[ツ]$である.
名城大学 私立 名城大学 2014年 第2問
$a,\ b$は定数で$a>0$とする.関数$f(x)=x^2-2ax+a^2+2a+b$について,次の各問に答えよ.

(1)放物線$y=f(x)$の頂点の座標を$a$と$b$を用いて表せ.
(2)$0 \leqq x \leqq 1$における関数$f(x)$の最小値が$0$であるとき,$a$を用いて$b$を表せ.
(3)$0 \leqq x \leqq 1$における関数$f(x)$の最小値が$0$,最大値が$3$であるとき,$a$と$b$の値を求めよ.
藤田保健衛生大学 私立 藤田保健衛生大学 2014年 第3問
現実の気体では圧力を$p>0$,体積を$v>0$,温度を$T>0$とし,$a,\ b,\ R$を正の定数として方程式
\[ \left( p+\frac{a}{v^2} \right) (v-b)=RT \cdots\cdots ① \]
に従う.

(1)$①$から$p$を$v$を用いて表すと$p=[$9$]$となる.
(2)ボイル・シャルルの法則に従えば,$pv=RT \cdots\cdots②$である.$a>bRT$のとき,$①$と$②$を$p$と$v$の連立方程式とみなすと$v=[$10$]$である.
(3)$T=T_c$(正定数)のとき$①$の$p$を$v$の関数とみなして$\displaystyle \frac{dp}{dv}$,$\displaystyle \frac{d^2p}{dv^2}$を求める.
$①$と$\displaystyle \frac{dp}{dv}=0$,$\displaystyle \frac{d^2p}{dv^2}=0$を同時に満たす$T_c$,$v_c$,$p_c$を求めると,$T_c=[$11$]$,$v_c=[$12$]$,$p_c=[$13$]$である.
名城大学 私立 名城大学 2014年 第1問
次の$[ ]$内に答えを記入せよ.

(1)箱の中に赤玉$1$個と白玉$2$個が入っている.箱の中から玉を$1$個取り出し,その色を見てから箱の中へ戻す試行をくり返す.玉を取り出すごとに,それが赤ならばくじを$2$回,白ならばくじを$1$回引くものとする.この操作を$n$回くり返すとき,くじを引く総回数の期待値を$E(n)$とおく.そのとき,$E(1)=[ア]$,$E(3)=[イ]$である.
(2)$f(x)=x^3+ax^2+bx$とする.曲線$y=f(x)$上の$2$点$\mathrm{P}(1,\ f(1))$,$\mathrm{Q}(-1,\ f(-1))$における接線が直交し,点$\mathrm{P}$で接線の傾きが$10$のとき,$a=[ウ]$,$b=[エ]$である.
南山大学 私立 南山大学 2014年 第3問
曲線$y=e^{-x} \cos x$上の点$(a,\ e^{-a} \cos a)$における接線の方程式を$y=g(x)$とする.

(1)$g(x)$を求めよ.
(2)定積分$\displaystyle A=\int_0^{\frac{\pi}{2}} \sin x \, dx$と$\displaystyle B=\int_0^{\frac{\pi}{2}} x \sin x \, dx$を計算せよ.
(3)定積分$\displaystyle S=\int_0^{\frac{\pi}{2}} g(x) \sin x \, dx$を計算せよ.
(4)$a$が$0 \leqq a \leqq \pi$の範囲を動くとき,$(3)$の$S$を最大にする$a$の値を求めよ.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。