タグ「関数」の検索結果

83ページ目:全2213問中821問~830問を表示)
愛媛大学 国立 愛媛大学 2014年 第4問
$a,\ b$は,$0<b<a$を満たす実数とする.曲線$y=e^x$上の点$(0,\ 1)$における接線$\ell_1$の方程式を$y=f(x)$,点$(a,\ e^a)$における接線$\ell_2$の方程式を$y=g(x)$とおく.また,$\ell_1$と$\ell_2$の交点の$x$座標を$p(a)$とする.連立不等式
\[ 0 \leqq x \leqq b,\quad f(x) \leqq y \leqq e^x \]
の表す領域の面積を$S_1$,連立不等式
\[ b \leqq x \leqq a,\quad g(x) \leqq y \leqq e^x \]
の表す領域の面積を$S_2$とし,$R=e^{-b}S_2$とおく.このとき,次の問いに答えよ.必要ならば,すべての自然数$k$に対して$\displaystyle \lim_{x \to \infty} x^ke^{-x}=0$が成り立つことを用いてよい.

(1)$p(a)$を求めよ.
(2)$S_1$と$S_2$を求めよ.
(3)$t=a-b$とする.$R$を$t$のみの関数として表せ.
(4)極限値$\displaystyle \lim_{a \to \infty} (a-p(a))$を求めよ.
(5)$b=p(a)$とする.このとき,極限値$\displaystyle \lim_{a \to \infty} \frac{S_2}{S_1}$を求めよ.
愛媛大学 国立 愛媛大学 2014年 第3問
$a,\ b$は,$0<b<a$を満たす実数とする.曲線$y=e^x$上の点$(0,\ 1)$における接線$\ell_1$の方程式を$y=f(x)$,点$(a,\ e^a)$における接線$\ell_2$の方程式を$y=g(x)$とおく.また,$\ell_1$と$\ell_2$の交点の$x$座標を$p(a)$とする.連立不等式
\[ 0 \leqq x \leqq b,\quad f(x) \leqq y \leqq e^x \]
の表す領域の面積を$S_1$,連立不等式
\[ b \leqq x \leqq a,\quad g(x) \leqq y \leqq e^x \]
の表す領域の面積を$S_2$とし,$R=e^{-b}S_2$とおく.このとき,次の問いに答えよ.必要ならば,すべての自然数$k$に対して$\displaystyle \lim_{x \to \infty} x^ke^{-x}=0$が成り立つことを用いてよい.

(1)$p(a)$を求めよ.
(2)$S_1$と$S_2$を求めよ.
(3)$t=a-b$とする.$R$を$t$のみの関数として表せ.
(4)極限値$\displaystyle \lim_{a \to \infty} (a-p(a))$を求めよ.
(5)$b=p(a)$とする.このとき,極限値$\displaystyle \lim_{a \to \infty} \frac{S_2}{S_1}$を求めよ.
東京学芸大学 国立 東京学芸大学 2014年 第4問
$f(x)$を区間$[0,\ 1]$で定義された連続な関数とする.このとき,定積分
\[ I=\int_0^1 \left[ 2f(x) \log (x+1)-\{f(x)\}^2 \right] \, dx \]
について下の問いに答えよ.

(1)$I$の値を最大にするような$f(x)$を求めよ.
(2)$I$の最大値を求めよ.
電気通信大学 国立 電気通信大学 2014年 第1問
関数$\displaystyle f(x)=\frac{e^x-2}{e^x+2}$について,以下の問いに答えよ.ただし,$e$は自然対数の底とする.

(1)極限$\displaystyle \lim_{x \to \infty}f(x)$,$\displaystyle \lim_{x \to -\infty}f(x)$をそれぞれ求めよ.
(2)導関数$f^\prime(x)$および第$2$次導関数$f^{\prime\prime}(x)$を求めよ.
(3)曲線$y=f(x)$を$C$とするとき,$C$の変曲点の座標を求めよ.
(4)曲線$C$の変曲点における接線$\ell$の方程式を求めよ.
(5)曲線$C$,$y$軸および接線$\ell$で囲まれた図形の面積$S$を求めよ.
電気通信大学 国立 電気通信大学 2014年 第2問
$2$つの関数
\[ f(x)=x \sqrt{4-x^2} (0 \leqq x \leqq 2),\quad g(y)=\sqrt{4-y^2} (0 \leqq y \leqq 2) \]
を考える.座標平面上において,曲線$y=f(x)$を$C_1$とし,曲線$x=g(y)$を$C_2$とする.このとき,以下の問いに答えよ.

(1)$C_1$と$C_2$との共有点の座標を求めよ.
(2)関数$f(x)$の最大値$M$を求めよ.
(3)$C_1$と$x$軸とで囲まれた図形の面積$S$を求めよ.
(4)点$(x,\ y)$が$C_1$上にあるとき,$x^2$を$y$を用いて表せ.
(5)$y$軸および$2$曲線$C_1$,$C_2$で囲まれた図形を,$y$軸の周りに$1$回転させてできる立体の体積$V$を求めよ.
長崎大学 国立 長崎大学 2014年 第4問
次の問いに答えよ.

(1)$\displaystyle -\frac{\pi}{2}<x<\frac{\pi}{2}$のとき,$\tan x=t$とおく.$\cos 2x$と$\displaystyle \frac{dx}{dt}$を$t$で表せ.

(2)$\displaystyle \int_0^{\frac{\pi}{4}} \frac{\tan x}{2-\cos 2x} \, dx$を求めよ.

(3)関数$\displaystyle y=\frac{e^x-e^{-x}}{2}$の逆関数を求めよ.

(4)$\displaystyle x=\frac{e^t-e^{-t}}{2}$とおくことにより,$\displaystyle \int \frac{dx}{\sqrt{x^2+1}}$を求めよ.
長崎大学 国立 長崎大学 2014年 第4問
次の問いに答えよ.

(1)$\displaystyle -\frac{\pi}{2}<x<\frac{\pi}{2}$のとき,$\tan x=t$とおく.$\cos 2x$と$\displaystyle \frac{dx}{dt}$を$t$で表せ.

(2)$\displaystyle \int_0^{\frac{\pi}{4}} \frac{\tan x}{2-\cos 2x} \, dx$を求めよ.

(3)関数$\displaystyle y=\frac{e^x-e^{-x}}{2}$の逆関数を求めよ.

(4)$\displaystyle x=\frac{e^t-e^{-t}}{2}$とおくことにより,$\displaystyle \int \frac{dx}{\sqrt{x^2+1}}$を求めよ.
長崎大学 国立 長崎大学 2014年 第4問
区間$0 \leqq x \leqq \pi$において,関数$f(x)$と関数$g(x)$を
\[ f(x)=\frac{1}{2} \cos x,\quad g(x)=\cos \frac{x}{2}+c \]
と定義する.$c$は定数である.次の問いに答えよ.

(1)区間$0 \leqq x \leqq \pi$において,$2$曲線$y=f(x)$と$y=g(x)$が$x=0$以外の点で接するように$c$の値を定め,接点$(p,\ q)$を求めよ.また,そのとき,区間$0 \leqq x \leqq \pi$における関数$f(x)$と関数$g(x)$の大小関係を調べよ.
(2)定数$c$と接点$(p,\ q)$は$(1)$で求めたものとする.そのとき,区間$0 \leqq x \leqq p$において,$y$軸および$2$曲線$y=f(x)$,$y=g(x)$によって囲まれた図形を$D$とする.$D$を$y$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
愛媛大学 国立 愛媛大学 2014年 第2問
次の問いに答えよ.

(1)すべての実数$x$に対して
\[ f(x)=\sin \pi x+\int_0^1 tf(t) \, dt \]
が成り立つような関数$f(x)$を求めよ.
(2)次の極限値を求めよ.
\[ \lim_{\theta \to 0} \frac{\theta^3}{\tan \theta-\sin \theta} \]
(3)次の極限値を求めよ.
\[ \lim_{n \to \infty} \sum_{k=n+1}^{2n} \frac{1}{k} \]
(4)関数$f(x)=|x| (e^x+a)$は$x=0$において微分可能であるとする.このとき,定数$a$の値を求めよ.
千葉大学 国立 千葉大学 2014年 第6問
実数$a$に対し,関数$\displaystyle f(x)=\int_x^{x+1} |t+1| \, dt+a$を考える.曲線$C:y=f(x)$が$x$軸と$2$個の共有点を持つための$a$の範囲を求めよ.またこのとき曲線$C$と$x$軸で囲まれる部分の面積を求めよ.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。