タグ「関数」の検索結果

82ページ目:全2213問中811問~820問を表示)
宇都宮大学 国立 宇都宮大学 2014年 第6問
関数$f(x)$を$\displaystyle f(x)=\frac{k}{x+1}-1$と定める.ただし,$k$は正の定数である.このとき,次の問いに答えよ.

(1)$y=f(x)$のグラフが$x$軸と交わる点の$x$座標を$k$を用いて表せ.
(2)$\displaystyle S=\int_0^2 |f(x)| \, dx$を求めよ.
(3)$(2)$における$S$を最小にする$k$と,そのときの$S$の値を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2014年 第3問
次の問いに答えよ.

(1)関数$\displaystyle y=\frac{\log x}{x} (x>0)$の増減を調べ,そのグラフの概形を描け.ただし,$\displaystyle \lim_{x \to \infty} \frac{\log x}{x}=0$は証明なく用いて良い.
(2)異なる自然数$m,\ n$の組で
\[ m^n=n^m \]
を満たすものをすべて求めよ.
(3)曲線$\displaystyle y=\frac{\log x}{x}$と直線$\displaystyle y=\frac{\log 2}{2}$で囲まれた図形の面積を求めよ.
茨城大学 国立 茨城大学 2014年 第1問
区間$0<x<\pi$で関数$y=f(x)=\cos (\sqrt{2}x)$を考え,そのグラフを$C$とする.$C$上の点$\mathrm{P}(\theta,\ \cos (\sqrt{2} \theta))$における$C$の法線を$\ell$,$\ell$と$x$軸との交点を$\mathrm{Q}$,点$\mathrm{P}$と点$\mathrm{Q}$の距離を$g(\theta)$とする.ただし,点$\mathrm{P}$における$C$の法線とは,点$\mathrm{P}$を通りかつ$\mathrm{P}$での$C$の接線に直交する直線のことである.以下の各問に答えよ.

(1)$f(x)$の増減の様子を調べ,$C$の概形をかけ.さらに,$f(x)$の最小値を与える$x$の値,および$C$と$x$軸との交点の$x$座標を求めよ.
(2)$\ell$の方程式を求めよ.
(3)$\mathrm{Q}$の座標を求めよ.
(4)$\theta$が$0<\theta<\pi$の範囲を動くとき,$t=\cos^2 (\sqrt{2} \theta)$の動く範囲と$g(\theta)$の最大値を求めよ.
(5)$\theta$が$0<\theta<\pi$の範囲を動くとき,$g(\theta)$の最大値を与える$\theta$の値をすべて求めよ.
宇都宮大学 国立 宇都宮大学 2014年 第5問
$\alpha \neq 0$,$\beta \neq 0$として,関数$f_n(x) (n=1,\ 2,\ \cdots)$を
\[ \begin{array}{l}
f_1(x)=a_1 \sin \alpha x+b_1 \cos \alpha x \\
f_{n+1}(x)=\beta (f_n(x)+{f_n}^\prime(x)) \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \]
と定める.ただし,$a_1$,$b_1$,$\alpha$,$\beta$は実数である.このとき,次の問いに答えよ.

(1)$f_n(x)$は$f_n(x)=a_n \sin \alpha x+b_n \cos \alpha x$($a_n,\ b_n$は実数)の形で表されることを示せ.
(2)$(1)$における$a_n,\ b_n (n=1,\ 2,\ \cdots)$について,行列$P$を用いて
\[ \left( \begin{array}{c}
a_{n+1} \\
b_{n+1}
\end{array} \right)=P \left( \begin{array}{c}
a_{n} \\
b_{n}
\end{array} \right) \]
と表すとき,行列$P$を求めよ.
(3)$a_1=0$,$b_1=2$,$\alpha=\sqrt{3}$,$\displaystyle \beta=\frac{1}{2}$とするとき,$f_{99}(x)$を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2014年 第3問
放物線$y=x^2$を$C$,$y=-x^2+2x+4$を$D$とする.実数$t$を用いて表される$D$上の点$\mathrm{P}(t,\ -t^2+2t+4)$における$D$の接線を$\ell$とする.

(1)$C$と$D$が異なる$2$点で交わることを示し,その$x$座標を求めよ.
(2)接線$\ell$の方程式を$y=f(x)$とする.$f(x)$を求めよ.
(3)$(1)$で求めた$2$交点の$x$座標を$a,\ b (a<b)$とする.$a<t<b$を満たす$t$に対して,$(2)$で求めた接線$\ell$の方程式を$y=f(x)$とする.次の連立不等式の表す領域の面積を$S(t)$とする.
\[ \left\{ \begin{array}{l}
y \geqq x^2 \\
y \leqq f(x) \\
y \geqq -x^2+2x+4
\end{array} \right. \]

$t$が$a<t<b$の範囲を動くとき,$S(t)$が最小となる$t$の値と,そのときの$S(t)$の値を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2014年 第3問
関数$f(x)=e^{-\sqrt{3}x}(1-\cos x)$を考える.自然数$n$に対し,区間$2(n-1) \pi \leqq x \leqq 2n \pi$における関数$f(x)$の最大値を$A_n$とする.

(1)$A_1$を求めよ.
(2)自然数$n$に対し,$A_n$を$n$を用いて表せ.
(3)無限級数$\displaystyle \sum_{n=1}^\infty A_n$の和を求めよ.
鳥取大学 国立 鳥取大学 2014年 第3問
実数の定数$a,\ b$に対し,関数$f(x)=\sin^2 2x-a(4 \cos^2 x-\cos 2x-2)+b$が与えられている.

(1)$t=\cos 2x$として$f(x)$を$t,\ a,\ b$を用いて表せ.
(2)すべての実数$x$に対して不等式$-1 \leqq f(x) \leqq 3$が成り立つような点$(a,\ b)$の範囲を図示せよ.
鳥取大学 国立 鳥取大学 2014年 第1問
実数の定数$a,\ b$に対し,関数$f(x)=\sin^2 2x-a(4 \cos^2 x-\cos 2x-2)+b$が与えられている.

(1)$t=\cos 2x$として$f(x)$を$t,\ a,\ b$を用いて表せ.
(2)すべての実数$x$に対して不等式$-1 \leqq f(x) \leqq 3$が成り立つような点$(a,\ b)$の範囲を図示せよ.
東京農工大学 国立 東京農工大学 2014年 第4問
$p$を正の実数とする.関数
\[ f(x)=\int_{-1}^x \{p-\log (1+|t|)\} \, dt \]
について,次の問いに答えよ.ただし,対数は自然対数とする.

(1)$f(x)$の極値を求めよ.
(2)$xy$平面の曲線$y=f(x)$が$x$軸の正の部分と$2$点で交わるような,$p$の値の範囲を求めよ.
愛媛大学 国立 愛媛大学 2014年 第2問
$t,\ x$は実数とする.関数$f(t)$を$f(t)=2 |t-1|+t+1$と定義し,$\displaystyle F(x)=\int_0^x f(t) \, dt$とおく.

(1)関数$y=f(t)$のグラフをかけ.
(2)関数$F(x)$を求めよ.
(3)曲線$y=F(x)$上の点$(0,\ F(0))$における接線$\ell$の方程式を求めよ.
(4)曲線$y=F(x)$と$(3)$で求めた接線$\ell$とで囲まれた図形の面積を求めよ.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。