タグ「関数」の検索結果

78ページ目:全2213問中771問~780問を表示)
防衛医科大学校 国立 防衛医科大学校 2014年 第4問
$\displaystyle y=f(x)=\tan x \left( -\frac{\pi}{2}<x<\frac{\pi}{2},\ -\infty<y<\infty \right)$の逆関数を$\displaystyle y=f^{-1}(x)=\tan^{-1}x \left( -\infty<x<\infty,\ -\frac{\pi}{2}<y<\frac{\pi}{2} \right)$とする.このとき,以下の問に答えよ.

(1)次の問に答えよ.

(i) $\displaystyle \tan^{-1} \frac{1}{2}+\tan^{-1} \frac{1}{3}$はいくらか.

(ii) $\displaystyle \tan^{-1} \frac{1}{2}+\tan^{-1} \frac{1}{3}=\tan^{-1} \frac{1}{4}+\tan^{-1} \frac{1}{x}$を満たす実数$x$を求めよ.

(2)次の問に答えよ.

(i) $y=f^{-1}(x)$のグラフの概形を描け.
(ii) $(ⅰ)$のグラフの点$\displaystyle \left( 1,\ \frac{\pi}{4} \right)$における接線を求めよ.
(iii) 導関数$(\tan^{-1}x)^\prime$を求めよ.

(3)不定積分$\displaystyle \int \frac{1}{x^2+x+1} \, dx$を求めよ.
香川大学 国立 香川大学 2014年 第2問
座標平面の原点を$\mathrm{O}$とし,点$\mathrm{A}$を第$1$象限に,点$\mathrm{B}$を$x$軸の正の部分に,$\mathrm{AO}=\mathrm{AB}=1$となるようにとる.このとき,次の問に答えよ.

(1)二等辺三角形$\mathrm{AOB}$の底角を$\theta$とするとき,頂点$\mathrm{A}$,$\mathrm{B}$の座標を$\theta$を用いて表せ.
(2)$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を通る放物線を$C:y=f(x)$とする.このとき,$f(x)$を求めよ.
(3)放物線$C$と$x$軸で囲まれた図形の面積$S$を求めよ.
(4)面積$S$の最大値と,そのときの$\theta$の値を求めよ.
香川大学 国立 香川大学 2014年 第2問
座標平面の原点を$\mathrm{O}$とし,点$\mathrm{A}$を第$1$象限に,点$\mathrm{B}$を$x$軸の正の部分に,$\mathrm{AO}=\mathrm{AB}=1$となるようにとる.このとき,次の問に答えよ.

(1)二等辺三角形$\mathrm{AOB}$の底角を$\theta$とするとき,頂点$\mathrm{A}$,$\mathrm{B}$の座標を$\theta$を用いて表せ.
(2)$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を通る放物線を$C:y=f(x)$とする.このとき,$f(x)$を求めよ.
(3)放物線$C$と$x$軸で囲まれた図形の面積$S$を求めよ.
(4)面積$S$の最大値と,そのときの$\theta$の値を求めよ.
香川大学 国立 香川大学 2014年 第4問
関数$f(x)=xe^{2-x}$について,次の問に答えよ.

(1)曲線$C:y=f(x)$の概形をかけ.
(2)曲線$C$の接線のうち傾きが最小のものを$\ell$とするとき,$\ell$の方程式を求めよ.
(3)曲線$C$と直線$\ell$および$y$軸で囲まれた図形の面積を求めよ.
香川大学 国立 香川大学 2014年 第1問
関数$f(x)=xe^{2-x}$について,次の問に答えよ.

(1)曲線$C:y=f(x)$の概形をかけ.
(2)曲線$C$の接線のうち傾きが最小のものを$\ell$とするとき,$\ell$の方程式を求めよ.
(3)曲線$C$と直線$\ell$および$y$軸で囲まれた図形の面積を求めよ.
高知大学 国立 高知大学 2014年 第1問
$0 \leqq \theta \leqq \pi$とする.関数$f(x)=(x-\cos \theta+\sin \theta)^2+2 \sin^2 \theta-1$について,次の問いに答えよ.

(1)方程式$f(x)=0$が実数解を持つような$\theta$の範囲を求めよ.
(2)方程式$f(x)=0$が実数解を持つとき,その二つの解を$\alpha,\ \beta$とする.このとき,$\alpha+\beta$の最大値および最小値を求めよ.
(3)関数$y=f(x)$のグラフと$x$軸で囲まれる部分の面積が$\displaystyle \frac{\sqrt{2}}{3}$となるときの$\theta$の値を求めよ.
高知大学 国立 高知大学 2014年 第1問
$f(x)=x(x-1)(x+1)$とおく.このとき,次の問いに答えよ.

(1)関数$y=f(x)$が極大,極小になるときの$x$と,その極大値,極小値を求めよ.
(2)$y=f(x)$のグラフの概形をかけ.
(3)$x$が$\displaystyle |x-1|<\frac{1}{2}$をみたすとき,点$(x,\ f(x))$は点$(1,\ 0)$を中心とする半径$3$の円の内部に含まれることを示せ.
(4)$1$以下の正の数$r$に対して,$x$が$|x-1|<r$の範囲を動くとき,点$(x,\ f(x))$は点$(1,\ 0)$を中心とする半径$10r$の円の内部に含まれることを示せ.
高知大学 国立 高知大学 2014年 第2問
$\{a_n\},\ \{b_n\}$を${a_n}^2-b_n \geqq 0 (n=1,\ 2,\ \cdots)$となる数列とし,$3$次関数
\[ y=x^3+3a_nx^2+3b_nx+1 \]
のグラフの接線の傾きが$0$となる接点の$x$座標のうち小さくない方を$c_n$とする.このとき,次の問いに答えよ.

(1)$\{a_n\},\ \{b_n\}$が$a_n=n$,$b_n=n^2$で与えられる数列のとき,$\{c_n\}$を求めよ.
(2)$\{b_n\}$を初項も公差も$0$である等差数列とする.このとき,$c_n=b_n (n=1,\ 2,\ \cdots)$となるための条件を求めよ.
(3)$\{a_n\},\ \{b_n\}$をそれぞれ公比が$r$,$r^2$の等比数列とする.このとき,$\{c_n\}$が等比数列になるための条件を求めよ.
(4)$\{a_n\}$が初項$100$,公差$-3$の等差数列で,$\{b_n\}$は初項$396$,公差$-12$の等差数列のとき,$\{c_n\}$を求めよ.
高知大学 国立 高知大学 2014年 第3問
関数$f(x)$を
\[ f(x)=\left\{ \begin{array}{ll}
\displaystyle\frac{1}{2}(x+1)x & (-1 \leqq x \leqq 0 \text{のとき}) \\
-\displaystyle\frac{1}{2}x(x-1) & (0<x \leqq 1 \text{のとき}) \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
とおくとき,次の問いに答えよ.

(1)$f(x)$は$x=0$で微分可能であることを示せ.
(2)関数$y=f(x)$のグラフをかけ.
(3)$y=f^\prime(x)$のグラフを$-1<x<1$の範囲でかき,$f^\prime(x)$が$x=0$で微分可能かどうかを理由をつけて述べよ.
(4)$y=f(x)$のグラフと$x$軸で囲まれた部分を,$x$軸のまわりに回転してできる立体の体積を求めよ.
宮城教育大学 国立 宮城教育大学 2014年 第2問
関数
\[ f(x)=\int_{-a}^x (a-|t|) \, dt \]
を考える.次の問いに答えよ.ただし,$a$は正の定数とする.

(1)$x \leqq 0$と$x \geqq 0$の場合に,関数$f(x)$を求めよ.
(2)関数$y=f(x)$のグラフをかけ.
(3)曲線$y=f(x)$上の点$\mathrm{A}$の$x$座標は負であり,点$\mathrm{A}$における曲線$y=f(x)$の接線の傾きが$-\sqrt{2}a$であるとき,点$\mathrm{A}$の座標を求めよ.さらに,点$\mathrm{A}$を通って$x$軸に平行な直線と曲線$y=f(x)$で囲まれた図形の面積を求めよ.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。