タグ「関数」の検索結果

63ページ目:全2213問中621問~630問を表示)
明治大学 私立 明治大学 2015年 第1問
次の$[ ]$に適する数を入れよ.

(1)製品$\mathrm{A}$は$3$つの部品$\mathrm{a}$,$\mathrm{b}$,$\mathrm{c}$から構成される.部品$\mathrm{a}$,$\mathrm{b}$,$\mathrm{c}$は,製造する過程において各々$\displaystyle \frac{1}{8}$の確率で低品質のものが発生する.製品$\mathrm{A}$に$2$つ以上の低品質の部品が含まれるとき,製品$\mathrm{A}$は不良品となる.製品$\mathrm{A}$を$1$つ製造するとき,それが不良品となる確率は$\displaystyle \frac{[ア][イ]}{[ウ][エ][オ]}$である.

(2)$a$を実数,$k$を正の実数として
\[ F(a)=\int_a^k (x^2-a^2) \, dx \]
とおく.関数$F(a)$の極値の差が$72$となるような$k$の値は$[カ]$である.
(3)四面体$\mathrm{OABC}$は,$\mathrm{OA}=4$,$\mathrm{OB}=5$,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$をみたすとする.$\mathrm{O}$から辺$\mathrm{AB}$に垂線を下ろし,この垂線と$\mathrm{AB}$との交点を$\mathrm{D}$とする.このとき
\[ \overrightarrow{\mathrm{OD}}=\frac{[キ]}{[ク]} \overrightarrow{\mathrm{OA}}+\frac{[ケ]}{[コ]} \overrightarrow{\mathrm{OB}} \]
である.辺$\mathrm{BC}$を$3:2$に内分する点を$\mathrm{E}$,線分$\mathrm{AE}$と線分$\mathrm{CD}$との交点を$\mathrm{F}$とする.このとき
\[ \overrightarrow{\mathrm{OF}}=\frac{[サ]}{[シ]} \overrightarrow{\mathrm{OA}}+\frac{[ス]}{[セ]} \overrightarrow{\mathrm{OB}}+\frac{[ソ]}{[タ][チ]} \overrightarrow{\mathrm{OC}} \]
である.
中京大学 私立 中京大学 2015年 第2問
$2$次関数$y=2x^2-4x+a^2+a$のグラフが$x$軸に接するとき,定数$a$の値は$-[ア]$,$[イ]$であり,このとき,この関数の$0 \leqq x \leqq 3$における最大値は$[ウ]$である.
千葉工業大学 私立 千葉工業大学 2015年 第1問
次の各問に答えよ.

(1)実数$x,\ y$が$(3+2i)x-(2+5i)y=6-7i$(ただし,$i^2=-1$)をみたすとき,$x=[ア]$,$y=[イ]$である.
(2)不等式$\displaystyle \frac{x-4}{3}<\frac{x-3}{2}<\frac{x-2}{6}$の解は$\displaystyle [ウ]<x<\frac{[エ]}{[オ]}$である.
(3)三角形$\mathrm{ABC}$において,$A={120}^\circ$,$B={45}^\circ$,$\mathrm{BC}=6 \sqrt{2}$のとき,$\mathrm{CA}=[カ] \sqrt{[キ]}$である.
(4)$3$個のサイコロを同時に投げるとき,出た目の和が$4$である確率は$\displaystyle \frac{[ク]}{[ケコ]}$,出た目の和が$16$である確率は$\displaystyle \frac{[サ]}{[シス]}$である.
(5)整式$2x^3+ax^2-bx-14$が$x^2-4$で割り切れるとき,定数$a,\ b$の値は$\displaystyle a=\frac{[セ]}{[ソ]}$,$b=[タ]$である.
(6)方程式$16^x-9 \cdot 4^x+8=0$の解は$\displaystyle x=[チ],\ \frac{[ツ]}{[テ]}$である.
(7)不等式$\displaystyle \log_2 (x-3)<\frac{1}{2} \log_2 (2x-3)$の解は$[ト]<x<[ナ]$である.
(8)関数$f(x)=x^3-ax^2+(a+3)x+4$が$x=3$で極値をとるとき,定数$a$の値は$[ニ]$であり,$f(x)$の極大値は$[ヌ]$である.
千葉工業大学 私立 千葉工業大学 2015年 第3問
次の各問に答えよ.

(1)$\displaystyle f(x)=|\displaystyle\frac{7|{2}x-3}-x$とする.方程式$f(x)=0$の解は,小さい順に,$\displaystyle x=\frac{[ア]}{[イ]}$,$\displaystyle \frac{[ウ]}{[エ]}$である.

折れ線$L:y=|f(x)|$と直線$y=k$(ただし,$k$は定数)がちょうど$3$点を共有するのは$\displaystyle k=\frac{[オ]}{[カ]}$のときであり,$L$と直線$y=mx-1$(ただし,$m$は定数)がちょうど$3$点を共有するのは$\displaystyle m=\frac{[キ]}{[ク]},\ \frac{[ケコ]}{[サ]}$のときである.

(2)三角形$\mathrm{ABC}$の内部の点$\mathrm{P}$に対して,等式$\overrightarrow{\mathrm{AP}}+5 \overrightarrow{\mathrm{BP}}+4 \overrightarrow{\mathrm{CP}}=k \overrightarrow{\mathrm{AB}}$(ただし,$k$は実数)が成り立つ.このとき,
\[ \overrightarrow{\mathrm{AP}}=\frac{k+[シ]}{[スセ]} \overrightarrow{\mathrm{AB}}+\frac{[ソ]}{[タ]} \overrightarrow{\mathrm{AC}} \]
である.直線$\mathrm{AP}$と辺$\mathrm{BC}$との交点$\mathrm{Q}$が$\mathrm{BC}$を$3:2$に内分するとき,
\[ \overrightarrow{\mathrm{AP}}=\frac{[チ]}{[ツ]} \overrightarrow{\mathrm{AQ}},\quad k=\frac{[テト]}{[ナ]} \]
である.
久留米大学 私立 久留米大学 2015年 第4問
$x$は実数で,関数$f(x)$は$x>0$において$f(x)=(x^x-1)(\log_e x+1)$と定義されている.

(1)$f(x)=0$となる$x$の値は,$[$10$]$である.
(2)$x^x$の導関数は$[$11$]$となる.
(3)曲線$y=f(x)$と$x$軸とで囲まれた部分の面積は$[$12$]$である.
藤田保健衛生大学 私立 藤田保健衛生大学 2015年 第5問
$n=1,\ 2,\ 3,\ \cdots$に対して,関数$F_n(x)$を
\[ F_1(x)=\frac{1}{1+x},\quad F_{n+1}(x)=\frac{1}{1+F_n(x)} \]
で定義する.

(1)$F_3(x)$を求めると,$[$11$]$である.次に$n=1,\ 2,\ 3,\ \cdots$に対して,数列$\{p_n\}$を
\[ p_1=1,\quad p_2=1,\quad p_{n+2}=p_{n+1}+p_n \]
で定義する.
(2)$\displaystyle F_n(x)=\frac{a_n+b_n x}{c_n+d_n x}$で与えられるとき,$n \geqq 2$に対して$a_n,\ b_n,\ c_n,\ d_n$を数列$\{p_n\}$を用いて表すと$(a_n,\ b_n,\ c_n,\ d_n)=[$12$]$である.
(3)$\displaystyle \lim_{n \to \infty} \frac{p_{n+1}}{p_n}$が存在することを用いて$\displaystyle \lim_{n \to \infty}F_n(0)$の値を求めると$[$13$]$である.
沖縄国際大学 私立 沖縄国際大学 2015年 第3問
以下の各問に答えなさい.

(1)次の関数のグラフを$x$軸方向に$\displaystyle -\frac{1}{3}$,$y$軸方向に$\displaystyle -\frac{1}{3}$だけ平行移動したグラフの方程式を求めよ.
\[ y=-3x^2+2x-1 \]
(2)関数$f(x)=x^2-12x+c$が$2 \leqq x \leqq 9$において最大値が$12$になるように,定数$c$の値を求めよ.
(3)縦横$13$本の線を持つ碁盤($13$路盤)がある.各線によって構成される枠の大きさはすべて等しく,$1$辺が$1 \, \mathrm{cm}$である.ここで,$4$つの角を左上から反時計回りに$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とした場合,辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CD}$上にそれぞれ$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$の場所に碁石を配置した.ただし,$\mathrm{AE}=x$,$\mathrm{BF}=2x$,$\mathrm{CG}=x+6 (0<x<6)$であるようにする.このとき,三角形$\mathrm{EFG}$の面積が最小になる場合の$x$の値と,その面積を求めよ.
(図は省略)
沖縄国際大学 私立 沖縄国際大学 2015年 第3問
以下の各問いに答えなさい.

(1)次の関数のグラフを$x$軸方向に$-2$,$y$軸方向に$4$だけ平行移動したグラフの方程式を求めよ.
\[ y=x^2-4x+12 \]
(2)実数$x,\ y$について$4$次関数$y=(x^2+4x)^2+4x^2+16x+5$において,$-3 \leqq x \leqq 1$における最大値,最小値を求めよ.
(3)菱形の凧を作成したい.使用できる凧の骨が$14 \, \mathrm{cm}$で,凧の骨は対角線に配置する.このとき,凧の大きさ(面積)の最大値を求めよ.また,周の長さの最小値も求めよ.
首都大学東京 公立 首都大学東京 2015年 第3問
関数$f(x)$,$g(x)$を
\[ \begin{array}{l}
f(x)=x^3-5x^2 \\
g(x)=3^{3x}+3^{-3x}-5(3^{2x}+3^{-2x})+3(3^x+3^{-x}) \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \]
で定めるとき,以下の問いに答えなさい.

(1)$f(x)$のすべての極値と極値を与える$x$の値を求めなさい.
(2)$t=3^x+3^{-x}$とするとき,$g(x)$を$t$の式で表しなさい.
(3)$g(x)$の最小値と最小値を与える$x$の値を求めなさい.
首都大学東京 公立 首都大学東京 2015年 第2問
関数
\[ f(x)=\sqrt{2} \sin x-\sqrt{2} \cos x-\sin 2x \]
に対して,以下の問いに答えなさい.

(1)$\displaystyle t=\cos \left( x+\frac{\pi}{4} \right)$とおくとき,$f(x)$を$t$の式で表しなさい.
(2)$f(x)$の最大値と最小値を求めなさい.
(3)方程式$f(x)=a$が$0 \leqq x<2\pi$の範囲で相異なる$2$つの解をもつための実数$a$の条件を求めなさい.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。