タグ「関数」の検索結果

53ページ目:全2213問中521問~530問を表示)
東京理科大学 私立 東京理科大学 2015年 第1問
次の文章の$[ア]$から$[ム]$までに当てはまる数字$0$~$9$を求めなさい.

(1)$c$を定数として,$3$次関数$f(x)$を
\[ f(x)=\frac{1}{3}x(x-1)(x-c) \]
と定める.$f(x)$の導関数$f^\prime(x)$は$\alpha,\ \beta (\alpha<\beta)$において
\[ f^\prime(\alpha)=0,\quad f^\prime(\beta)=0 \]
を満たすものとする.
解と係数の関係により,
\[ \alpha+\beta=\frac{[ア]}{[イ]}(c+1),\quad \alpha\beta=\frac{1}{[ウ]}c \]
である.したがって


$\displaystyle\frac{f(\alpha)-f(\beta)}{\alpha-\beta}=-\frac{[エ]}{[オ][カ]}(c^2-c+[キ])$

$\displaystyle (\alpha-\beta)^2=\frac{[ク]}{[ケ]}(c^2-c+1)$


となるので,$\displaystyle c=\frac{1}{2}$のとき
\[ f(\alpha)-f(\beta)=\frac{\sqrt{[コ]}}{[サ][シ]} \]
である.
(2)定数$\theta$に対して,数列$\{a_n\}$を
\[ a_n=\cos (2^{n-1}\theta) \quad (n=1,\ 2,\ 3,\ \cdots) \]
と定める.

(i) 余弦の$2$倍角の公式により,数列$\{a_n\}$は漸化式
\[ a_{n+1}=[ス] {a_n^2}-1 \]
を満たす.
(ii) $\theta$が$\displaystyle \cos \theta=\frac{1}{3}$を満たすとき
\[ a_3=\frac{[セ][ソ]}{[タ][チ]} \]
である.
(iii) $\displaystyle \theta=\frac{5}{96}\pi$とするとき
\[ a_{n+1}=a_n \]
を満たす最小の正の整数$n$は$[ツ]$である.

(3)大,中,小の$3$個のさいころを同時に投げるものとする.

(i) $1$の目が少なくとも$1$つ出る確率は$\displaystyle \frac{[テ][ト]}{[ナ][ニ][ヌ]}$である.
(ii) 出る目の最大値が$5$である確率は$\displaystyle \frac{[ネ][ノ]}{[ハ][ヒ][フ]}$である.
(iii) 大のさいころの目は中のさいころの目以上であり,かつ,小のさいころの目は中のさいころの目以下である確率は$\displaystyle \frac{[ヘ]}{[ホ][マ]}$である.
\mon[$\tokeishi$] 大と小のさいころの目の平均が中のさいころの目と等しい確率は$\displaystyle \frac{1}{[ミ][ム]}$である.
東京理科大学 私立 東京理科大学 2015年 第3問
正の定数$a (a \neq 1)$に対して,$2$次関数$f(x)$を
\[ f(x)=ax(1-x) \]
と定める.曲線$C:y=f(x)$の点$(1,\ 0)$における接線を$\ell_1$,直線$y=-x$を$\ell_2$とする.曲線$C$の$x \leqq 1$の部分と$2$直線$\ell_1$,$\ell_2$で囲まれる部分の面積を$S$で表し,また,この部分を$x$軸の周りに$1$回転してできる図形の体積を$V$で表す.

(1)直線$\ell_1,\ \ell_2$の交点の座標を$a$を用いて表せ.
(2)$S$を$a$を用いて表せ.
(3)定数$a$は$a>1$を満たすものとする.$2$直線$\ell_1$,$\ell_2$と$x$軸で囲まれる部分を$x$軸の周りに$1$回転してできる図形の体積を$U$で表すとき,
\[ \frac{30a^3}{(a-1)^4 \pi}(V-U) \]
を$a$の$1$次式で表せ.
(4)$\displaystyle \lim_{a \to 1+0}(a-1)^2V$の値を求めよ.
東京理科大学 私立 東京理科大学 2015年 第1問
次の文章中の$[ア]$から$[ヨ]$までに当てはまる数字$0$~$9$を求めよ.

(1)実数$a$に対し,$2$つの$2$次関数

$f(x)=x^2-2a^2x-a^4-2a^2-8$
$g(x)=-x^2+2(a^2-4)x-3a^4-2a^3-16$

を考える.

(i) すべての実数$x$に対して$g(x)<f(x)$が成り立つための必要十分条件は
\[ a>-[ア] \quad \text{かつ} \quad a \neq [イ] \]
である.
(ii) $g(x)$の最大値は$-[ウ]a^4-[エ]a^3-[オ]a^2$である.
(iii) 次の条件$(*)$を満たす実数$b$がただ$1$つ存在するとする.

$(*)$ \quad 「すべての実数$x$に対して \ $g(x) \leqq b \leqq f(x)$ \ が成り立つ.」

このとき,
\[ a=-[カ] \quad \text{または} \quad a=[キ] \]
であり,$a=-[カ]$のときは$b=-[ク][ケ]$,$a=[キ]$のときは$b=-[コ][サ]$である.

(2)次の条件で定められる数列$\{a_n\}$,$\{b_n\}$を考える.
\[ a_1=1,\quad b_1=-2,\quad \left\{ \begin{array}{lcl}
a_{n+1} &=& 8a_n+b_n \\
b_{n+1} &=& -25a_n-2b_n
\end{array} \right. \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき
\[ [シ]a_{n+1}+b_{n+1}=[ス]([シ]a_n+b_n) \]
であるので,
\[ b_n={[セ]}^n-[ソ]a_n \]
である.これにより
\[ \frac{a_{n+1}}{{[タ]}^n}=\frac{a_n}{{[タ]}^{n-1}}+1 \]
となる.したがって
\[ a_n=n \cdot {[チ]}^{n-\mkakko{ツ}} \]
となる.
(3)平面上に,$\triangle \mathrm{ABC}$とその内部の点$\mathrm{O}$をとったとき,

$\mathrm{OA}=1+\sqrt{3}$
$\mathrm{OB}=\sqrt{3}$
$\mathrm{OC}=\sqrt{2}$
$\sqrt{3} \overrightarrow{\mathrm{OA}}+2 \overrightarrow{\mathrm{OB}}+3 \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}}$

となっていた.
このとき,内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$の値は$\displaystyle \frac{-[テ]-\sqrt{[ト]}}{[ナ]}$であるので
\[ \angle \mathrm{AOB}={[ニ][ヌ][ネ]}^\circ \]
である.同様に$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=-[ノ]-\sqrt{[ハ]}$から
\[ \angle \mathrm{AOC}={[ヒ][フ][ヘ]}^\circ \]
である.したがって,
\[ \angle \mathrm{BOC}={[ホ][マ][ミ]}^\circ \]
となる.また,
\[ \sin {[ホ][マ][ミ]}^\circ=\frac{\sqrt{[ム]} \left( [メ]+\sqrt{[モ]} \right)}{4} \]
である.したがって,$\triangle \mathrm{ABC}$の面積は$\displaystyle [ヤ]+\frac{[ユ] \sqrt{[ヨ]}}{2}$である.
早稲田大学 私立 早稲田大学 2015年 第3問
関数
\[ f(x)=\tan^2 x+8 \cos 2x \quad \left( 0<x<\frac{\pi}{2} \right) \]
は,$\displaystyle x=\frac{[コ]}{[サ]} \pi$のとき,最小値$[シ]$をとる.
早稲田大学 私立 早稲田大学 2015年 第3問
関数
\[ f(x)=\tan^2 x+8 \cos 2x \quad \left( 0<x<\frac{\pi}{2} \right) \]
は,$\displaystyle x=\frac{[コ]}{[サ]} \pi$のとき,最小値$[シ]$をとる.
東京理科大学 私立 東京理科大学 2015年 第1問
$[ ]$内に$0$から$9$までの数字を$1$つずつ入れよ.

(1)$a$を正の定数とし,関数
\[ f(x)=\tan 2x \ \left( 0 \leqq x<\frac{\pi}{4} \right) \text{および} g(x)=a \cos x\ \left( 0 \leqq x \leqq \frac{\pi}{2} \right) \]
に対して,曲線$y=f(x)$と$y=g(x)$の交点の$x$座標を$\theta$とする.曲線$y=f(x)$と$x$軸,および直線$x=\theta$で囲まれた部分の面積$S$を考える.

(i) $a=[ア]$のとき,$\displaystyle \theta=\frac{\pi}{6}$である.このとき$\displaystyle S=\frac{[イ]}{[ウ]} \times \log [エ]$である.
(ii) $a=\sqrt{[オ]}$のとき,$\displaystyle S=\frac{1}{2} \log \frac{\sqrt{7}+1}{2}$である.

ただし,正の数$A$に対して,$\log A$は$A$の自然対数を表す.
(2)$1$個のサイコロを投げ,その出た目によって,点$\mathrm{P}$を座標平面上で移動させる試行を繰り返す.
点$\mathrm{P}$の出発点$(x_0,\ y_0)$を原点$(0,\ 0)$とし,$1$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_1,\ y_1)$,$2$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_2,\ y_2)$,以下同様に$k$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_k,\ y_k)$とする.
座標$(x_k,\ y_k) (k=1,\ 2,\ 3,\ \cdots)$は次のルールによって定める.
サイコロを$k$回目に投げたとき,出た目を$3$で割った商を$q$,余りを$r$として,$x_k$を次のように$q$によって定め,
\[ \left\{ \begin{array}{ll}
q=0 & \text{のとき}x_k=x_{k-1} \\
q=1 & \text{のとき}x_k=x_{k-1}+1 \\
q=2 & \text{のとき}x_k=x_{k-1}-1
\end{array} \right. \]
$y_k$を次のように$r$によって定める.
\[ \left\{ \begin{array}{ll}
r=0 & \text{のとき}y_k=y_{k-1} \\
r=1 & \text{のとき}y_k=y_{k-1}+1 \\
r=2 & \text{のとき}y_k=y_{k-1}-1
\end{array} \right. \]
ただし,サイコロを投げたとき,$1$から$6$の目がそれぞれ確率$\displaystyle \frac{1}{6}$で出るものとする.

(i) $(x_2,\ y_2)=(0,\ 0)$である確率は$\displaystyle \frac{[ア]}{[イ]}$であり,$(x_3,\ y_3)=(0,\ 0)$である確率は$\displaystyle \frac{[ウ]}{[エオ]}$である.
(ii) $x_k+y_k$が偶数である確率を$p_k$とすると,$\displaystyle p_1=\frac{[カ]}{[キ]}$であり,
\[ p_k=\frac{[ク]}{[ケ]} \cdot \left( -\frac{[コ]}{[サ]} \right)^k+\frac{[シ]}{[ス]} \quad (k=2,\ 3,\ 4,\ \cdots) \]
である.

(3)$1$辺の長さが$1$の正四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$を$2:1$の比に内分する点を$\mathrm{P}$($\mathrm{OP}:\mathrm{PA}=2:1$),辺$\mathrm{OC}$を$1:2$の比に内分する点を$\mathrm{Q}$($\mathrm{OQ}:\mathrm{QC}=1:2$),辺$\mathrm{AB}$の中点を$\mathrm{M}$とする.


(i) $\displaystyle \mathrm{MP}=\frac{\sqrt{[ア]}}{[イ]}$,$\displaystyle \mathrm{MQ}=\frac{\sqrt{[ウエ]}}{[オ]}$である.

(ii) 三角形$\mathrm{MPQ}$の面積は$\displaystyle \frac{[カ]}{[キク]} \times \sqrt{[ケコ]}$である.

(iii) 辺$\mathrm{BC}$上の$\displaystyle \mathrm{BR}=\frac{[サ]}{[シ]}$となる点$\mathrm{R}$は,$3$点$\mathrm{M}$,$\mathrm{P}$,$\mathrm{Q}$で定まる平面上にある.
東京理科大学 私立 東京理科大学 2015年 第3問
不等式$\displaystyle \frac{x}{x-1} \geqq 0$を満たす実数$x$の範囲を定義域とする関数
\[ f(x)=3x \sqrt{\frac{x}{x-1}} \]
について,以下の問いに答えよ.

(1)関数$f(x)$の定義域を求めよ.
(2)$\displaystyle a_1=\lim_{x \to \infty} \frac{f(x)}{x}$,$\displaystyle a_2=\lim_{x \to -\infty} \frac{f(x)}{x}$とする.$a_1$,$a_2$の値を求めよ.
(3)$(2)$の$a_1,\ a_2$に対して,$\displaystyle b_1=\lim_{x \to \infty}(f(x)-a_1x)$,$\displaystyle b_2=\lim_{x \to -\infty}(f(x)-a_2x)$とする.$b_1$,$b_2$の値を求めよ.
(4)関数$f(x)$の極小値を求めよ.
(5)曲線$y=f(x)$の漸近線の方程式を求めよ.
(6)$k$を定数とするとき,方程式$f(x)=k$の実数解の個数を求めよ.
早稲田大学 私立 早稲田大学 2015年 第1問
$[ア]$~$[エ]$にあてはまる数または式を記入せよ.

(1)数列$\{a_n\}$は,次の条件$(ⅰ),\ (ⅱ)$を満たす.


(i) $a_1=0,\quad a_n \leqq 0 \quad (n=2,\ 3,\ 4,\ \cdots)$

(ii) $\displaystyle n=\int_{a_n}^{a_{n+1}} \left( x+\frac{1}{2} \right) \, dx \quad (n=1,\ 2,\ 3,\ \cdots)$


$n=2,\ 3,\ 4,\ \cdots$のとき,$a_n=[ア]$である.
(2)$\displaystyle \sum_{k=1}^7 \log_2 \cos \frac{k\pi}{16}=[イ]$
(3)実数$x,\ y$が,$|x|+|y|=1$を満たしているとき,
\[ |7x-3y|+|5x-11y| \]
の最大値は$[ウ]$である.
(4)関数$f(x)=1-2 |x|$を考える.次の条件$(ⅰ),\ (ⅱ)$を満たす実数$a$は全部で$[エ]$個ある.

(i) $f(a) \neq a$
(ii) $f(f(f(a)))=a$
東京理科大学 私立 東京理科大学 2015年 第1問
次の$[ ]$内にあてはまる$0$から$9$までの数字を求めよ.

(1)$\displaystyle f(x)=4x^4+8x^3+3x^2-2x+\frac{1}{4}$,$\displaystyle g(x)=4x^4-8x^3+3x^2+2x+\frac{1}{4}$で定められる関数に対して,

$f(x)$は$\displaystyle x=-\frac{[ア]}{[イ]}+\frac{[ウ]}{[エ]} \sqrt{3}$において最小値$\displaystyle \frac{[オ][カ]}{[キ][ク]}-\frac{[ケ]}{[コ]} \sqrt{3}$をとり,

$g(x)$は$\displaystyle x=\frac{[サ]}{[シ]}-\frac{[ス]}{[セ]} \sqrt{3}$において最小値$\displaystyle \frac{[ソ][タ]}{[チ][ツ]}-\frac{[テ]}{[ト]} \sqrt{3}$をとる.

(2)$a$を正の実数とし,座標平面上の$2$曲線$\displaystyle B_1:y={\left( \frac{a}{\pi} x \right)}^2$と$B_2:y=\sin x$の$0<x<\pi$における交点の$x$座標を$t$,$0 \leqq x \leqq t$において$2$曲線で囲まれた領域の面積を$S$とすると,
\[ S=[ナ]-\frac{[ニ]}{[ヌ]}t \sin t-[ネ] \cos t \]
である.
$a=2$のとき,$\displaystyle t=\frac{[ノ]}{[ハ]} \pi$である.

$0<a \leqq 2$に対して$S$がとり得る値の範囲は
\[ [ヒ]-\frac{[フ]}{[ヘ]} \pi \leqq S<[ホ] \]
である.
(3)空調のある$1$号室,$2$号室,$3$号室は電力事情により,同時に$1$部屋しか空調の電源をオンにできない.最初は$1$号室の電源をオンにすることにし,それ以降は$1$時間ごとに大小の$2$つの公平なさいころをふって,どの部屋の電源をオンにするかを以下のように決める.
\begin{itemize}
大きい方のさいころの目が奇数ならば,小さい方の目にかかわらず同じ部屋の電源をオンにしたままとする.
大きい方のさいころの目が偶数ならば,残りの$2$つの部屋のどちらか一方の電源をオンにする.その際,小さい方のさいころの目が奇数ならば,番号の小さい部屋の電源,偶数ならば番号の大きい方の電源をオンにする.
\end{itemize}
自然数$n$に対して,$1$号室の電源を最初にオンにした時から$n$時間後に,$1$号室の空調の電源をオンにする確率を$a_n$,$2$号室の空調の電源をオンにする確率を$b_n$,$3$号室の空調の電源をオンにする確率を$c_n$とする.


(i) $\displaystyle a_1=\frac{[マ]}{[ミ]}$,$\displaystyle b_1=\frac{[ム]}{[メ]}$,$\displaystyle c_1=\frac{[モ]}{[ヤ]}$である.

すべての自然数$n$に対して以下が成り立つ.
(ii) $a_n+b_n+c_n=[ユ]$

(iii) $\displaystyle a_{n+1}=\frac{[ヨ]}{[ラ]}a_n+\frac{[リ]}{[ル]}b_n+\frac{[リ]}{[ル]}c_n$

\mon[$\tokeishi$] $\displaystyle a_n=\frac{[レ]}{[ロ]} {\left( \frac{[ワ]}{[ヲ]} \right)}^n+\frac{[ン]}{[あ]}$

$\displaystyle b_n=-\frac{[い]}{[う]} {\left( \frac{[え]}{[お]} \right)}^n+\frac{[か]}{[き]}$

$\displaystyle c_n=-\frac{[く]}{[け]} {\left( \frac{[こ]}{[さ]} \right)}^n+\frac{[し]}{[す]}$
早稲田大学 私立 早稲田大学 2015年 第1問
次の問いに答えよ.

(1)$\cos 3 \theta$を$\cos \theta$のみの式で表せ.
(2)次の$(ⅰ),\ (ⅱ)$に答えよ.

(i) $3$次関数$\displaystyle f(x)=x^3-\frac{3}{4}x$について増減表を書き,$y=f(x)$のグラフの概形を描け.
(ii) $y=f(x)$のグラフと直線$y=k$が共有点を$2$つまたは$3$つもつような定数$k$の値の範囲を求めよ.
また,$k$がこの範囲を動くとき,共有点の$x$座標のとる値の範囲を求めよ.

(3)$3$次方程式$\displaystyle x^3-\frac{3}{4}x-\frac{1}{8}=0$の解を$x=\cos \theta (0 \leqq \theta \leqq \pi)$とおくとき,$\theta$の値を求めよ.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。