タグ「関数」の検索結果

52ページ目:全2213問中511問~520問を表示)
上智大学 私立 上智大学 2015年 第1問
次の問いに答えよ.

(1)座標平面において,$1$次関数$y=4x+2$が表す直線を$\ell$とし,$\ell$上に点$\mathrm{P}(1,\ 6)$をとる.また,$2$次関数$y=f(x)$が表す放物線を$C$とする.

(i) $C$が点$\mathrm{P}$で$\ell$と接し,かつ$C$が点$(0,\ 1)$を通るとき,
\[ f(x)=[ア]x^2+[イ]x+[ウ] \]
である.
(ii) $C$が点$\mathrm{P}$で$\ell$と接するとき,$C$の頂点は直線
\[ y=[エ]x+[オ] \]
上に存在する。 

(2)複素数$z$の虚部を$\mathrm{Im}(z)$で表すことにする.
$2$次方程式$x^2-4x+9=0$の異なる$2$つの解を$\alpha,\ \beta$とし,$x^2-2x+2=0$の異なる$2$つの解を$\alpha^\prime,\ \beta^\prime$とする.ただし,$\mathrm{Im}(\alpha)>\mathrm{Im}(\beta)$および$\mathrm{Im}(\alpha^\prime)>\mathrm{Im}(\beta^\prime)$とする.このとき,$2$数$\displaystyle \frac{\alpha}{\alpha^\prime},\ \frac{\beta}{\beta^\prime}$を解とする$2$次方程式の$1$つは,
\[ x^2+\left( [カ]+[キ] \sqrt{[ク]} \right)x+\frac{[ケ]}{[コ]}=0 \]
である.
東京理科大学 私立 東京理科大学 2015年 第4問
関数$\displaystyle f(x)=\frac{2^x-2^{-x}}{2}$について考える.

(1)$\displaystyle f \left( \log_{\frac{1}{2}} 5 \right)=\frac{[ア][イ]}{[ウ]}$
(2)$\displaystyle f(a)=\frac{4}{3}$をみたす$a$に対して,$2^a=[エ]$
(3)$\displaystyle f(b)=\frac{15}{8}$をみたす$b$に対して,$\displaystyle f(b+\log_2 3)=\frac{[オ][カ][キ]}{[ク][ケ]}$
東京理科大学 私立 東京理科大学 2015年 第2問
$p$を正の定数として,関数$f(x)$を
\[ f(x)=-5x^p \log x \quad (x>0) \]
と定める.$a$は$f^\prime(a)=0$を満たす正の実数とする.ここで,$\log x$は自然対数であり,$e$は自然対数の底を表す.また,$f^\prime(x)$は$f(x)$の導関数である.

(1)$a$の値を$p$を用いて表せ.
(2)不定積分$\int f(x) \, dx$を求め$p$を用いて表せ.
(3)直線$x=a$と$x$軸,および曲線$y=f(x)$の$a \leqq x \leqq 1$の部分で囲まれる部分の面積を$S$とする.このとき,
\[ \lim_{p \to +0}S \]
の値を求めよ.必要ならば,$\displaystyle \lim_{u \to +0} \frac{e^{-\frac{1}{u}}}{u}=0$であることを用いてよい.
東京理科大学 私立 東京理科大学 2015年 第2問
$t$を$0<t<1$を満たす実数として,関数$f(x)$を
\[ f(x)=-x^2+(1+t^2)x-t^2 \]
と定める.座標平面において,原点$\mathrm{O}$から放物線$y=f(x)$へ引いた接線のうち,接点の$x$座標が正のものを考える.その接点を$\mathrm{P}(p,\ f(p))$とおく.

(1)点$\mathrm{P}$の座標を$t$を用いて表せ.
(2)放物線$y=f(x)$の$x \leqq p$の部分,$x$軸,直線$x=p$で囲まれる図形の面積を$S_1$とする.$S_1$を$t$を用いて表せ.
(3)線分$\mathrm{OP}$,$x$軸,直線$x=p$で囲まれる図形の面積を$S_2$とし,$(2)$の$S_1$に対して$S=S_2-S_1$とおく.$t$が$0<t<1$の範囲を動くとき$S$を最大にする$t$の値を求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第6問
$a,\ b,\ c$を実数とする.$x$の関数
\[ F(x)=x^3+ax^2+bx+c \]
は$x=\alpha$で極大になり,$x=\beta$で極小になるとする.曲線$y=F(x)$上の点$\mathrm{B}(\beta,\ F(\beta))$における接線を$\ell$とし,$\ell$と$y=F(x)$の共有点のうち$\mathrm{B}$と異なるものを$(\gamma,\ F(\gamma))$とする.

(1)$x$の整式$F(x)-F(\beta)$を,$\beta,\ \gamma$を用いて$1$次式の積に因数分解された形で表せ.
(2)$\gamma$を$\alpha,\ \beta$のみを含む式で表せ.必要ならば$x$の整式で表される関数$p(x)$,$q(x)$とそれらの導関数に関して成り立つ公式
\[ \{p(x)q(x)\}^\prime=p^\prime(x)q(x)+p(x)q^\prime(x) \]
を用いてもよい.
(3)$f(x)=F^\prime(x)$とする.直線$x=\gamma$,$x$軸,および曲線$y=f(x)$で囲まれた図形のうち$y \geqq 0$となる部分の面積$S$を,$\alpha,\ \beta$のみを含む式で表せ.さらに,$\displaystyle a-b \geqq \frac{3}{2}$が成り立つとき,$S$の最小値を求めよ.
上智大学 私立 上智大学 2015年 第1問
次の問いに答えよ.

(1)関数$f(x)=|\abs{x^2-3|-1} (x \geqq 0)$を考える.

(i) $f(x)=0$となるのは$x=\sqrt{[ア]}$または$x=[イ]$のときである.ただし,$\sqrt{[ア]}<[イ]$とする.
(ii) 関数$f(x)$は区間$\sqrt{[ア]} \leqq x \leqq [イ]$において,$x=\sqrt{[ウ]}$で極大値$[エ]$をとる.
(iii) $\displaystyle \int_0^2 \frac{3}{8}f(x) \, dx=[オ]+\sqrt{[カ]}+\frac{[キ]}{[ク]} \sqrt{[ケ]}$である.

(2)関数$g(x)$を
\[ g(x)=2^{3x+2}-3(1+\sqrt{2}) \cdot 4^x+3 \cdot 2^{x+\frac{1}{2}} \]
で定める.$g(x)$は,
$x=[コ]$で極大値$\displaystyle \frac{[サ]}{[シ]}+\frac{[ス]}{[セ]} \sqrt{[ソ]}$,

$\displaystyle x=\frac{[タ]}{[チ]}$で極小値$\displaystyle \frac{[ツ]}{[テ]}+\frac{[ト]}{[ナ]} \sqrt{[ニ]}$

をとる.
東京理科大学 私立 東京理科大学 2015年 第3問
次の問いに答えよ.

(1)関数$\displaystyle f(x)=\frac{1}{5} \sin x+1$のとり得る値の範囲は
\[ \frac{[ア]}{[イ]} \leqq f(x) \leqq \frac{[ウ]}{[エ]} \]
である.
(2)関数$\displaystyle g(x)=\frac{1}{3} \sin x-\frac{1}{4} \cos x+1$を考える.$g(x)$のとり得る値の範囲は
\[ \frac{[オ]}{[カ][キ]} \leqq g(x) \leqq \frac{[ク][ケ]}{[コ][サ]} \]
である.
また,$g(\alpha)=1$となる実数$\alpha$をとると
\[ \tan \alpha=\frac{[シ]}{[ス]} \]
となる.
(3)関数$\displaystyle h(x)=\sin^2 x+\frac{1}{2} \sin x \cos x-\frac{1}{3} \cos^2 x+1$のとり得る値の範囲は
\[ \frac{[セ][ソ]-\sqrt{[タ][チ]}}{[ツ][テ]} \leqq h(x) \leqq \frac{[ト][ナ]+\sqrt{[ニ][ヌ]}}{[ネ][ノ]} \]
である.
東京理科大学 私立 東京理科大学 2015年 第4問
関数$F(x),\ G(x),\ H(x)$を

$\displaystyle F(x)=\int_0^1 \left( \frac{x}{3}-t \right)e^{-2t} \, dt \quad (x>0)$

$\displaystyle G(x)=\int_0^x \left( \frac{x}{3}-t \right)e^{-2t} \, dt \quad (x>0)$

$\displaystyle H(x)=\int_0^x |\displaystyle\frac{x|{3}-t }e^{-2t} \, dt \quad (x>0)$

と定める.ここで,$e$は自然対数の底である.$F(x)$,$G(x)$,$H(x)$は次のように書き表される.

$\displaystyle F(x)=\left( \frac{\mkakko{ア}}{\mkakko{イ}}-\frac{\mkakko{ウ}}{\mkakko{エ}}e^{-\mkakko{オ}} \right)x+\left( -\frac{\mkakko{カ}}{\mkakko{キ}}+\frac{\mkakko{ク}}{\mkakko{ケ}}e^{-\mkakko{コ}} \right)$

$\displaystyle G(x)=\left( \frac{\mkakko{サ}}{\mkakko{シ}}x+\frac{\mkakko{ス}}{\mkakko{セ}} \right) e^{-\mkakko{ソ}x}+\left( \frac{\mkakko{タ}}{\mkakko{チ}}x-\frac{\mkakko{ツ}}{\mkakko{テ}} \right)$

$\displaystyle H(x)=-\left( \frac{\mkakko{ト}}{\mkakko{ナ}}x+\frac{\mkakko{ニ}}{\mkakko{ヌ}} \right) e^{-\mkakko{ネ}x}+\frac{\mkakko{ノ}}{\mkakko{ハ}}e^{-\frac{\mkakko{ヒ}}{\mkakko{フ}}x}+\left( \frac{\mkakko{ヘ}}{\mkakko{ホ}}x-\frac{\mkakko{マ}}{\mkakko{ミ}} \right)$
東京理科大学 私立 東京理科大学 2015年 第2問
実数$a,\ b$に対して,$f(x)=x^2+ax+b$とする.次の問いに答えよ.

(1)$-1 \leqq x \leqq 1$における$f(x)$の最大値を$M$,最小値を$m$とする.

\mon[$\mathrm{(a)}$] $M,\ m$をそれぞれ以下の場合に分けて$a,\ b$を用いて表せ.

(i) $a \leqq -2$
(ii) $-2<a<2$
(iii) $2 \leqq a$

\mon[$\mathrm{(b)}$] $M-m$が最小となるような$a$の値を求め,さらにそのときの$M-m$の値を求めよ.

(2)$-1 \leqq x \leqq 1$における$|f(x)|$の最大値が最小となるような$a,\ b$の値を求め,さらにそのときの$|f(x)|$の最大値を求めよ.
東京理科大学 私立 東京理科大学 2015年 第3問
定数$a$に対し,
\[ f(x)=a \sin 2x-\tan x \quad \left( 0 \leqq x<\frac{\pi}{2} \right) \]
とおく.

(1)$\displaystyle a>\frac{1}{2}$であるとする.実数$\theta$を,$\displaystyle 0<\theta<\frac{\pi}{2}$かつ$f(\theta)=0$を満たすものとするとき,$\cos \theta$を$a$を用いて表せ.
(2)不定積分
\[ \int f(x) \, dx \]
を求めよ.
(3)$\displaystyle \frac{1}{2}<a<1$であるとする.このとき,
\[ \int_0^{\frac{\pi}{4}} |f(x)| \, dx+\log a \]
を$a$の$1$次式で表せ.ただし,$\log$は自然対数を表す.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。