タグ「関数」の検索結果

50ページ目:全2213問中491問~500問を表示)
自治医科大学 私立 自治医科大学 2015年 第22問
関数$\displaystyle f(x)=\frac{2ax}{x^2-ax+1}$($|a|<2$,$a$は実数)の最大値が$2$となるとき,$a$のとる値は,$p$と$q$の$2$つ存在する.$|p-q|$の値を求めよ.
自治医科大学 私立 自治医科大学 2015年 第25問
関数$f(x)$は,等式$\displaystyle f(x)=3x^2 \int_{-1}^1 f(t) \, dt+x \int_0^1 \{f^\prime(t)\}^2 \, dt+\int_0^1 f(t) \, dt$を満たす.$\displaystyle f(0)-\frac{1}{4}$の値を求めよ.$\displaystyle \int_0^1 f(t) \, dt \neq 0$とする.
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
$\mathrm{M}$社はブドウを栽培し,それを原料にしたワインを醸造して世界中に販売している,としよう.一般には,企業の業績には,社内のさまざまな活動だけでなく,社外の要因も大きくかかわっている.しかしながら,ここでは,問題が複雑にならないように,一部の活動に限定して,$\mathrm{M}$社の醸造計画を考えてみよう.

栽培および醸造において,量と質には,醸造量が増えれば増えるほどワインの品質が低下する,という関係があると仮定する.この関係は,
\[ q=a-bx \]
という単純な式で表されるとする.ここで,$x$はワインの醸造量(リットル),$q$はワインの品質の高さを表す$\mathrm{M}$社が独自に定めた指標とし,$a$と$b$は正の実数とする.また,変数$x$のとり得る値の範囲は,$x$と$q$がともに正の値となる範囲とする.
醸造されるワインはすべて同一の品質で,同一の価格で販売されるものとし,その価格を$p$(円/リットル)で表す.市場において,品質の高いワインは希少性が増すため,その価格は非常に高いものになる.この関係は,
\[ p=cq^2 \]
で表されると仮定する.ただし,$c$は正の実数とする.また,醸造されたワインは,上記で定まる価格で,すべて残らずに販売されてしまうものとする.
$\mathrm{M}$社は,以上の諸条件を前提にして,その年の栽培および醸造を行う.すなわち,醸造量を$x$と決め,それに応じて適切な栽培および醸造を行うことにより,品質の指標が$q$となるワインを作り,その全量(すなわち$x$)を品質の指標$q$に応じた価格$p$で販売し,売上高$y=px$(円)を得る.

(1)売上高は,
\[ x=\frac{[$69$]}{[$70$]} \cdot \frac{a}{b} \ \text{(リットル)} \]
のとき,最大値
\[ \frac{[$71$]}{[$72$][$73$]} \cdot \frac{ca \!\!\! \raisebox{3mm}[5mm][1mm]{\mkakko{$74$}}}{b} \ \text{(円)} \]
をとる.
(2)次に,ワインを醸造するに際し,技術上の制約や販売上の都合などの理由で,醸造量の下限が設けられているとしよう.この下限を正の実数$m$(リットル)で表す.$x$の取り得る値の範囲には,$x$が$m$以上という条件が追加されることになる.このときの売上高の最大値を$\overline{y}$で表し,それを与える醸造量を$\overline{x}$で表す.$\overline{x}$は$m$の関数であるので,これを$\overline{x}=f(m)$で表す.関数$f(m)$の定義域を$\displaystyle 0<m<\frac{a}{b}$として,この関数のグラフを描きなさい.
同様に,$\overline{y}$も$m$の関数であるので,これを$\overline{y}=g(m)$で表す.関数$g(m)$の定義域を$\displaystyle 0<m<\frac{a}{b}$として,この関数のグラフを描きなさい.
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
$3$次関数$f(x)$は$x=0$で極小,$x=a>0$で極大になるとする.また$x=b (\neq a)$で$f(a)=f(b)$が成り立つとする.$x=b$における$y=f(x)$の接線が$y$軸と交わる点を$(0,\ c)$とおく.もし$3$点$(a,\ f(a))$,$(b,\ f(b))$,$(0,\ c)$を$3$頂点とする三角形が二等辺三角形になるならば,接線の傾きは
\[ -2 \sqrt{[$27$][$28$]} \quad\text{または}\quad -\sqrt{[$29$][$30$]} \]
であり,それぞれに対応して,$c$の値は
\[ c-f(a)=-\sqrt{[$31$][$32$]}a \quad\text{または}\quad -\frac{\sqrt{[$33$]}}{[$34$]}a \]
をみたす.
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

$p,\ q$を正の実数として,曲線$C$を$\displaystyle x^{\frac{1}{p}}+y^{\frac{1}{q}}=1 (0 \leqq x \leqq 1,\ 0 \leqq y \leqq 1)$により定義する.

(1)曲線$C$の方程式を$y$について解いて得られる関数を$y=f(x) (0 \leqq x \leqq 1)$とおく.$y=f(x)$のグラフが$0<x<1$において変曲点をもつためには$p,\ q$が条件$[あ]$を満たすことが必要十分である.
(2)曲線$C$と$x$軸,$y$軸で囲まれた図形の面積を$S(p,\ q)$とすると,$S(1,\ q)=[い]$であり,$p>1$ならば$S(p,\ q)$と$S(p-1,\ q+1)$の間には$S(p,\ q)=[う]S(p-1,\ q+1)$の関係がある.$p,\ q$がともに自然数であるときに$S(p,\ q)$を$p,\ q$の式で表すと$S(p,\ q)=[え]$である.
(3)$p=q=3$のとき,直線$\ell:x+y=\alpha$が曲線$C$と$2$点を共有するための必要十分条件は$[お]<\alpha \leqq 1$である.この条件が成り立つとき,直線$\ell$と曲線$C$の交点$\mathrm{P}$,$\mathrm{Q}$の$x$座標を$x_1,\ x_2$とすると$\displaystyle x_1^{\frac{1}{3}}x_2^{\frac{1}{3}}=[か]$かつ$\displaystyle \left( x_1^{\frac{1}{3}}-x_2^{\frac{1}{3}} \right)^2=[き]$である.さらに$\alpha_0=[お]$とおくとき$\displaystyle \lim_{\alpha \to \alpha_0+0} \frac{\mathrm{PQ}^2}{\alpha-\alpha_0}=[く]$が成り立つ.
慶應義塾大学 私立 慶應義塾大学 2015年 第4問
銀行口座(以降,口座)から$\mathrm{IC}$カードに金額を移転し,そのカードを用いて支払いをおこなうものとする.口座からカードに移転した金額を超過してさらに支払う必要が生じた場合,その分は銀行が自動的に立て替えて払うものとする.

このとき,口座からカードに金額を移転することに伴う利子収入の減少分,および銀行からの借入れに伴う利払い,そして口座からカードへの移転に伴う手数料,それらの合計$Z$を最小にする問題を考える.適当な仮定のもと,$Z$は独立変数$x,\ y$の関数として,つぎのように表わされる.
\[ Z=\frac{xy^2}{40A}+\frac{A^2-2xyA+x^2y^2}{30xA}+6x \]
ただし$(x,\ y)$は座標平面の第$1$象限の点であり,$A$は定数である.

(1)$x$を固定し,$Z$を$y$の関数と考えれば,その最小値は
\[ y=\frac{[$35$][$36$]}{[$37$][$38$]} \frac{A}{x} \]
のときである.
(2)$Z$に$(1)$の結果を代入し,$Z$を$x$のみの関数とみれば
\[ x=\sqrt{\frac{[$39$][$40$][$41$]}{[$42$][$43$][$44$]}A} \]
のとき$Z$は最小になる.
(3)以上から$Z$の最小値は
\[ \sqrt{\frac{[$45$][$46$][$47$]}{[$48$][$49$][$50$]}A} \]
である.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2015年 第4問
次の関数の最小値を求めよ.さらに,そのときの$x$の値を求めよ.
\[ f(x)=\{\log_2(2-x-x^2)\}^2-2 \log_2(2-x-x^2)+\frac{1}{2} \]
倉敷芸術科学大学 私立 倉敷芸術科学大学 2015年 第5問
$3$次関数$f(x)=2x^3+ax^2+bx+c$は$x=1$で極小値$f(1)=-6$をとり,かつ$f(-1)=14$である.このとき,定数$a,\ b,\ c$の値を求めよ.さらに,このグラフの概形を描け.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2015年 第5問
$0 \leqq x \leqq 3$のとき,次の$x$の関数の最大値と最小値を求めよ.また,そのときの$x$の値を求めよ.
\[ f(x)=\frac{1}{5-x}+\frac{1}{3+x} \]
立教大学 私立 立教大学 2015年 第1問
次の空欄$[ア]$~$[コ]$に当てはまる数または式を記入せよ.

(1)$2$つの自然数$p,\ q$が$p^2+pq+q^2=19$を満たすとき,$p+q=[ア]$である.
(2)$0 \leqq \theta<2\pi$のとき,$\sin^2 \theta+\cos \theta-1$の最大値は$[イ]$であり,最小値は$[ウ]$である.
(3)$\displaystyle S=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+\cdots +\frac{1}{\sqrt{45}+\sqrt{49}}$とすると,$S$の値は$[エ]$である.
(4)方程式$\log_{\sqrt{2}}(2-x)+\log_2 (x+1)=1$の解をすべて求めると,$x=[オ]$である.
(5)等式$\displaystyle f(x)=x^2+3 \int_0^1 f(t) \, dt$を満たす関数は,$f(x)=[カ]$である.
(6)座標空間における$4$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 3)$,$\mathrm{D}(x,\ 4,\ 5)$が同一平面上にあるとき,$x=[キ]$である.
(7)$3$次方程式$x^3-x^2+ax+b=0$の解の$1$つが$1+i$のとき,$a=[ク]$,$b=[ケ]$である.ただし,$a,\ b$は実数とし,$i$は虚数単位とする.
(8)三角形$\mathrm{ABC}$の辺の長さが$\mathrm{AB}=4$,$\mathrm{BC}=5$,$\mathrm{CA}=6$のとき,三角形$\mathrm{ABC}$の面積は$[コ]$である.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。