タグ「関数」の検索結果

42ページ目:全2213問中411問~420問を表示)
秋田大学 国立 秋田大学 2015年 第2問
次の問いに答えよ.

(1)次の数列$\{a_n\}$の一般項を求めよ.
\[ 4,\ 11,\ 24,\ 43,\ 68,\ 99,\ \cdots \]
(2)次の方程式を解け.

(i) $\log_2 x=\log_4 5$
(ii) $\log_2 x^2=5$

(3)$f(x)=x^3+3x^2-45x+41$とする.$-8 \leqq x \leqq 8$における関数$y=f(x)$の最大値と最小値を求めよ.
秋田大学 国立 秋田大学 2015年 第1問
次の問いに答えよ.

(1)次の数列$\{a_n\}$の一般項を求めよ.
\[ 4,\ 11,\ 24,\ 43,\ 68,\ 99,\ \cdots \]
(2)次の方程式を解け.

(i) $\log_2 x=\log_4 5$
(ii) $\log_2 x^2=5$

(3)$f(x)=x^3+3x^2-45x+41$とする.$-8 \leqq x \leqq 8$における関数$y=f(x)$の最大値と最小値を求めよ.
秋田大学 国立 秋田大学 2015年 第3問
$f(x)=|1+2 \sin 2x|$とする.次の問いに答えよ.

(1)$0 \leqq x \leqq \pi$のとき,方程式$f(x)=0$を解け.
(2)$0 \leqq x \leqq \pi$における関数$y=f(x)$のグラフの概形をかけ.

(3)$\displaystyle \int_0^\pi f(x) \, dx$を求めよ.

(4)$\displaystyle \int_{\frac{11}{12}\pi}^x f(t) \, dt=3\pi+18 \sqrt{3}$となる$x$の値を求めよ.
岩手大学 国立 岩手大学 2015年 第1問
関数$f(x)=x^3-3x$について,以下の問いに答えよ.

(1)関数$f(x)$の増減表をかいて極値を求め,$y=f(x)$のグラフの概形を描け.
(2)$2$次関数$g(x)$で,次の$3$項目が$f(x)$と一致するものを求めよ.
$①$ \ 極小値 \quad $②$ \ 極小値をとるときの$x$の値 \quad $③$ \ $x=0$における値
(3)$(2)$で求めた$g(x)$に対して,定積分$\displaystyle \int_{-1}^1 |g(x)| \, dx$を求めよ.
秋田大学 国立 秋田大学 2015年 第3問
$F(x),\ f(x),\ g(x)$は関数である.次の問いに答えよ.

(1)$0<a \leqq \pi$とし,$\displaystyle F(x)=\int_a^x \cos (t-a) g(\sin (t-a)) \, dt-f(x)$とする.

(i) $f(x)$は$\displaystyle (1-x) \int_0^x f(t) \, dt=x \int_x^1 f(t) \, dt$と$f(1)=1$を満たすとする.$f(x)$を求めよ.
(ii) $f(x)$は$(ⅰ)$で求めた関数である.$g(x)$は,$x<y$ならば$g(x)>g(y)$を満たし,$\displaystyle g \left( \frac{1}{\sqrt{2}} \right)=0$であるとする.このとき,開区間$(a,\ 2a)$で$F(x)$が極大値をただ$1$つもつように,$a$の値の範囲を定めよ.

(2)$a \geqq 0$とし,$\displaystyle F(x)=\int_a^{x+a} \cos (t-a) g(\sin (t-a)) \, dt-f(x)$とする.$f(x)>0$,$f^\prime(x)>0$であり,$g(x)=xf(x)$であるとする.$\displaystyle 0 \leqq x \leqq \frac{\pi}{4}$のとき$F(x) \leqq 0$となることを示せ.
岩手大学 国立 岩手大学 2015年 第3問
関数$f(x)=e^{-2x}$とする.曲線$C:y=f(x)$上の点$(1,\ f(1))$における接線が$x$軸と交わる点を$\mathrm{P}_1(x_1,\ 0)$とする.次に$C$上の点$(x_1,\ f(x_1))$における接線が$x$軸と交わる点を$\mathrm{P}_2(x_2,\ 0)$とする.以下同様に$n=3,\ 4,\ 5,\ \cdots$に対して$C$上の点$(x_{n-1},\ f(x_{n-1}))$における接線が$x$軸と交わる点を$\mathrm{P}_n(x_n,\ 0)$とする.このとき,次の問いに答えよ.

(1)$x_1$を求めよ.
(2)$x_{n+1}$を$x_n$で表せ.また$x_n$を$n$で表せ.
(3)$\displaystyle \sum_{k=1}^n 3^k x_k$を求めよ.
岩手大学 国立 岩手大学 2015年 第5問
関数$f(x)=\log (1+x)$について,次の問いに答えよ.ただし,対数は自然対数である.

(1)不定積分$\displaystyle \int f(x) \, dx$を求めよ.
(2)次の極限値を求めよ.
\[ \lim_{n \to \infty} \frac{1}{n} \left\{ f \left( \frac{1}{n} \right)+f \left( \frac{2}{n} \right)+\cdots +f \left( \frac{n}{n} \right) \right\} \]
(3)関数$g(x)=xf(x-1)-x$とするとき,$g(x)$の最小値を求めよ.
岩手大学 国立 岩手大学 2015年 第5問
$2$つの関数$f(x)=x^3+x^2-5x$,$g(x)=x^3-2x^2+ax+b$について,曲線$y=f(x)$を$C_1$,曲線$y=g(x)$を$C_2$とする.ただし,$a,\ b$は定数である.

関数$f(x)$が極大となるときの$x$の値を$k$とし,点$(k,\ g(k))$における曲線$C_2$の接線の傾きは$-18$であるとする.
さらに,$2$つの曲線$C_1$,$C_2$はいずれもある$1$点$\mathrm{P}$を通り,点$\mathrm{P}$における$C_1$の接線と点$\mathrm{P}$における$C_2$の接線が一致しているとき,次の問いに答えよ.

(1)$k$の値を求めよ.
(2)$a,\ b$の値をそれぞれ求めよ.
(3)直線$x=k$と$y$軸,および$2$曲線$C_1$,$C_2$によって囲まれた部分の面積を求めよ.
岩手大学 国立 岩手大学 2015年 第5問
$2$つの関数$f(x)=x^3+x^2-5x$,$g(x)=x^3-2x^2+ax+b$について,曲線$y=f(x)$を$C_1$,曲線$y=g(x)$を$C_2$とする.ただし,$a,\ b$は定数である.

関数$f(x)$が極大となるときの$x$の値を$k$とし,点$(k,\ g(k))$における曲線$C_2$の接線の傾きは$-18$であるとする.
さらに,$2$つの曲線$C_1$,$C_2$はいずれもある$1$点$\mathrm{P}$を通り,点$\mathrm{P}$における$C_1$の接線と点$\mathrm{P}$における$C_2$の接線が一致しているとき,次の問いに答えよ.

(1)$k$の値を求めよ.
(2)$a,\ b$の値をそれぞれ求めよ.
(3)直線$x=k$と$y$軸,および$2$曲線$C_1$,$C_2$によって囲まれた部分の面積を求めよ.
岩手大学 国立 岩手大学 2015年 第6問
次の問いに答えよ.

(1)$\sin 3\theta$を$\sin \theta$で表せ.
(2)$\cos 3\theta$を$\cos \theta$で表せ.
(3)関数$y=-8 \sin^3 \theta+6 \sin \theta-3 \cos \theta+4 \cos^3 \theta+1$の$\displaystyle \frac{\pi}{2} \leqq \theta \leqq \pi$における最大値と最小値を求めよ.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。