タグ「関数」の検索結果

35ページ目:全2213問中341問~350問を表示)
香川大学 国立 香川大学 2015年 第4問
$2$次関数$y=f(x)$のグラフは,点$\displaystyle \left( \frac{3}{2}a, -a \right)$を頂点とし,点$(a,\ 0)$を通る放物線である.ただし,$a \neq 0$とする.このとき,次の問に答えよ.

(1)$2$次関数$y=f(x)$を$a$を用いて表せ.
(2)$a>0$とするとき,放物線$y=f(x)$と$x$軸で囲まれた部分の面積$S(a)$を,積分を計算することによって求めよ.
(3)$S(2^n)>7^{10}$となる最小の自然数$n$を求めよ.必要であれば,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$,$\log_{10}7=0.8451$を用いてもよい.
佐賀大学 国立 佐賀大学 2015年 第1問
$\phantom{A}$
\[ f(x)=\left\{ \begin{array}{ll}
x(5-x) & (x \geqq 0) \\
x(x^2-1) & (x<0)
\end{array} \right. \]
とおき,関数$y=f(x)$のグラフを$C$とおく.直線$y=ax$と$C$は,原点$\mathrm{O}$およびそれ以外の$2$点$\mathrm{P}$,$\mathrm{Q}$で交わっているものとする.ただし,点$\mathrm{P}$の$x$座標は正,点$\mathrm{Q}$の$x$座標は負であるとする.線分$\mathrm{OP}$と$C$によって囲まれる図形の面積を$S_1(a)$,線分$\mathrm{OQ}$と$C$によって囲まれる図形の面積を$S_2(a)$とし,$S(a)=S_1(a)+S_2(a)$とおく.このとき,次の問に答えよ.

(1)$a$の値の範囲を求めよ.
(2)$S_1(a)$を$a$を用いて表せ.
(3)$S_2(a)$を$a$を用いて表せ.
(4)$(1)$で求めた範囲を$a$が変化するとき,$S(a)$の最小値を求めよ.
鳥取大学 国立 鳥取大学 2015年 第3問
$xy$平面上の第$1$象限内の$2$つの曲線$C_1:y=\sqrt{x} (x>0)$と$\displaystyle C_2:y=\frac{1}{x} (x>0)$を考える.次の問いに答えよ.ただし,$a$は正の実数とする.

(1)$x=a$における$C_1$の接線$L_1$の方程式を求めよ.
(2)$C_2$の接線$L_2$が$(1)$で求めた$L_1$と直交するとき,接線$L_2$の方程式を求めよ.
(3)$(2)$で求めた$L_2$が$x$軸,$y$軸と交わる点をそれぞれ$\mathrm{A}$,$\mathrm{B}$とする.折れ線$\mathrm{AOB}$の長さ$l$を$a$の関数として求め,$l$の最小値を求めよ.ここで,$\mathrm{O}$は原点である.
鳥取大学 国立 鳥取大学 2015年 第3問
$xy$平面上の第$1$象限内の$2$つの曲線$C_1:y=\sqrt{x} (x>0)$と$\displaystyle C_2:y=\frac{1}{x} (x>0)$を考える.次の問いに答えよ.ただし,$a$は正の実数とする.

(1)$x=a$における$C_1$の接線$L_1$の方程式を求めよ.
(2)$C_2$の接線$L_2$が$(1)$で求めた$L_1$と直交するとき,接線$L_2$の方程式を求めよ.
(3)$(2)$で求めた$L_2$が$x$軸,$y$軸と交わる点をそれぞれ$\mathrm{A}$,$\mathrm{B}$とする.折れ線$\mathrm{AOB}$の長さ$l$を$a$の関数として求め,$l$の最小値を求めよ.ここで,$\mathrm{O}$は原点である.
鳥取大学 国立 鳥取大学 2015年 第4問
連続関数$f(x)$は次の条件を満たす.
\[ f(x)=1+\int_0^x (x-t)f(t) \, dt \]
このとき,次の問いに答えよ.

(1)$\phi(x)=f(x)+f^\prime(x)$とおくとき,$\displaystyle \frac{\phi^\prime(x)}{\phi(x)}$を求めよ.
(2)$f(x)$を求めよ.
九州工業大学 国立 九州工業大学 2015年 第1問
関数$f(x)=e^{-x}\cos \sqrt{3}x$について以下の問いに答えよ.ただし,$e$は自然対数の底とする.

(1)$\displaystyle 0 \leqq x \leqq \frac{2 \sqrt{3}}{3}\pi$の範囲で$f(x)=0$をみたす$x$の値をすべて求めよ.
(2)$\displaystyle 0 \leqq x \leqq \frac{2 \sqrt{3}}{3}\pi$の範囲で$f(x)$の増減を調べよ.ただし,凹凸は調べなくてよい.
(3)部分積分を$2$回用いて$f(x)$の不定積分を求めよ.
(4)$\displaystyle 0 \leqq x \leqq \frac{2 \sqrt{3}}{3}\pi$の範囲で$2$つの曲線$y=f(x)$と$y=e^{-x}$によって囲まれた部分の面積を求めよ.
九州工業大学 国立 九州工業大学 2015年 第3問
$n$を自然数とし,関数$f_m(x) (m=0,\ 1,\ 2,\ \cdots,\ n)$を次のように定める.
\[ f_m(x)=\left\{ \begin{array}{ll}
1 & (m=0) \\
x^m & (m \geqq 1)
\end{array} \right. \]
さらに,$a_k (k=0,\ 1,\ 2,\ \cdots,\ n)$を次のように定める.
\[ a_k=\int_{-1}^1 f_k(1-x)f_{n-k}(1+x) \, dx \]
以下の問いに答えよ.

(1)$a_0$と$a_1$をそれぞれ$n$を用いて表せ.
(2)$k \geqq 1$のとき,$a_k$を$n,\ k,\ a_{k-1}$を用いて表せ.
(3)$a_k$を$n,\ k$を用いて表せ.
(4)$\displaystyle \sum_{k=0}^n \frac{1}{a_k}$を$n$を用いて表せ.
大分大学 国立 大分大学 2015年 第3問
$k$を実数とする.関数$y=|x(x-1)|$のグラフと直線$y=kx$が異なる$3$点を共有している.これらで囲まれた$2$つの部分の面積の和を$S$とする.

(1)$k$の値の範囲を求めなさい.
(2)$S$を$k$の式で表しなさい.
(3)$S$が最小になるときの$k$の値を求めなさい.
大分大学 国立 大分大学 2015年 第3問
$k$を実数とする.関数$y=|x(x-1)|$のグラフと直線$y=kx$が異なる$3$点を共有している.これらで囲まれた$2$つの部分の面積の和を$S$とする.

(1)$k$の値の範囲を求めなさい.
(2)$S$を$k$の式で表しなさい.
(3)$S$が最小になるときの$k$の値を求めなさい.
大分大学 国立 大分大学 2015年 第3問
$k$を実数とする.関数$y=|x(x-1)|$のグラフと直線$y=kx$が異なる$3$点を共有している.これらで囲まれた$2$つの部分の面積の和を$S$とする.

(1)$k$の値の範囲を求めなさい.
(2)$S$を$k$の式で表しなさい.
(3)$S$が最小になるときの$k$の値を求めなさい.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。